Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The aim of this work was the ToF-SIMS investigations of different particles arising as a result of a coal combustion process in selected power plants from Central Poland. The chemical composition and distribution of particular compounds on the studied surfaces were determined. Moreover, the ratio of the quantity of aromatic and aliphatic hydrocarbons adsorbed on the surface of the particles was estimated. A qualitative analysis of the studied samples demonstrated the presence of a big number of various compounds, including heavy metals such as Pb, Cd and As on the investigated surfaces. In the prevailing number sample components were distributed non-homogenously on the surface and the larger areas richer in a certain type of ions were observed.
EN
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used in order to obtain the information about the surface composition of Pd/ZrO2-TiO2 catalyst and to estimate the changes in the concentration of particular components on its surface during the hydrodechlorination of CCl4. The results demonstrated that the hydrodechlorination process led to the increase in the concentration of chlorine and the drop in the amount of surface accessible palladium, while the quantity of Pd-Cl bounds did not change considerably. It suggested that the presence of ZrO2 protected the surface of the studied catalyst against the formation of PdCl2.
EN
The aim of this paper was to investigate the physicochemical properties of palladium catalyst containing basic support MgO which was used in hydrodechlorination reaction with carbon tetrachloride. In order to characterize the investigated sample the catalyst was put to tests of XRD, TOF - SIMS, TG-DTA-MS and TPRH2 measurements, activity tests were also performed. The XRD and TPR results demonstrated the presence of PdOxCly species whose decomposition takes place above 700°C. The calcination of the Pd/MgO catalyst at 700°C resulted in the transformation of PdOxCly to PdO.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.