Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2012
|
vol. 10
|
issue 2
361-381
EN
Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number κ. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C s from the valence energy spectrum of particle and also for pseudospin symmetry constant C ps from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter α. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa, the Yukawa plus centrifugal-like potentials, the limit when α becomes zero (Coulomb potential field) and the non-relativistic limit of our solution are studied. The nonrelativistic solutions are compared with those obtained by other methods.
Open Physics
|
2008
|
vol. 6
|
issue 3
697-703
EN
Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrödinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, δ and ν are also given, where η depends on a linear combination of the angular momentum quantum number ℓ and the spatial dimensions D and δ is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigensolutions recover their standard analytical forms in literature.
Open Physics
|
2008
|
vol. 6
|
issue 3
685-696
EN
A new non-central potential, consisting of a pseudoharmonic potential plus another recently proposed ring-shaped potential, is solved. It has the form $$ V(r,\theta ) = \tfrac{1} {8}\kappa r_e^2 \left( {\tfrac{r} {{r_e }} - \tfrac{{r_e }} {r}} \right)^2 + \tfrac{{\beta cos^2 \theta }} {{r^2 sin^2 \theta }} $$. The energy eigenvalues and eigenfunctions of the bound-states for the Schrödinger equation in D-dimensions for this potential are obtained analytically by using the Nikiforov-Uvarov method. The radial and angular parts of the wave functions are obtained in terms of orthogonal Laguerre and Jacobi polynomials. We also find that the energy of the particle and the wave functions reduce to the energy and the wave functions of the bound-states in three dimensions.
Open Physics
|
2008
|
vol. 6
|
issue 1
141-152
EN
The Klein-Gordon equation in D-dimensions for a recently proposed ring-shaped Kratzer potential is solved analytically by means of the conventional Nikiforov-Uvarov method. The exact energy bound states and the corresponding wave functions of the Klein-Gordon are obtained in the presence of the non-central equal scalar and vector potentials. The results obtained in this work are more general and can be reduced to the standard forms in three dimensions given by other works.
Open Physics
|
2010
|
vol. 8
|
issue 4
652-666
EN
We study the approximate analytical solutions of the Dirac equation for the generalized Woods-Saxon potential with the pseudo-centrifugal term. We apply the Nikiforov-Uvarov method (which solves a second-order linear differential equation by reducing it to a generalized hypergeometric form) to spin- and pseudospin-symmetry to obtain, in closed form, the approximately analytical bound state energy eigenvalues and the corresponding upper- and lower-spinor components of two Dirac particles. The special cases κ = ±1 (s = $$ \tilde l $$ = 0, s-wave) and the non-relativistic limit can be reached easily and directly for the generalized and standard Woods-Saxon potentials. We compare the non-relativistic results with those obtained by others.
EN
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrödinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.