Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Transition metal catalysts (mainly: iron, cobalt and nickel) on various supports are successfully used in a largescale production of carbon nanotubes (CNTs), but after the synthesis it is necessary to perform very aggressive purification treatments that cause damages of CNTs and are not always effective. In this work a preparation of unsupported catalysts and their application to the multi-walled carbon nanotubes synthesis is presented. Iron, cobalt and bimetallic iron-cobalt catalysts were obtained by co-precipitation of iron and cobalt ions followed by solid state reactions. Although metal particles were not supported on the hard-to-reduce oxides, these catalysts showed nanometric dimensions. The catalysts were used for the growth of multi-walled carbon nanotubes by the chemical vapor deposition method. The syntheses were conducted under ethylene - argon atmosphere at 700°C. The obtained catalysts and carbon materials after the synthesis were characterized using transmission electron microscopy (TEM), X-ray diffraction method (XRD), Raman spectroscopy and thermogravimetric analysis (TG). The effect of the kind of catalyst on the properties of the obtained carbon material has been described.
EN
This work presents the results of the synthesis of carbon nanotubes using the CVD method. Fe: MgO catalyst was used, also in combination with rare earth elements (gadolinium (Gd), dysprosium (Dy)), which when used alone, are not efficient as catalysts in nanotube growth. Synthesis was performed both at reduced pressure (10-3 mbar) and atmospheric pressure, with constant parameters dependent on the process parameters.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.