Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Binding affinities of ten polycyclic aromatic hydrocarbons to albumin were determined: anthracene, its eight oxy-derivatives: anthraquinone, 9-anthracenemethanol, 9-anthraldehyde, 9-anthracenecarboxylic acid, 1,4-dihydroxyanthraquinone, 1,5-dihydroxyanthraquinone, 1,8-dihydroxyanthraquinone, 2,6-dihydroxyanthraquinone and benzo[a]pyrene. The quenching of albumin fluorescence was used to measure the PAH - protein interaction. The theoretical curve of calculated fluorescence was fitted to experimental data after necessary corrections regarding PAHs fluorescence and inner filter effect. From the numerical fitting the final association constants were calculated. Anthracene and anthraquinone failed to quench the albumin fluorescence. 9-anthracenecarboxylic acid showed the highest, while 9-anthracenemethanol the weakest albumin binding affinity. The affinity constants determined for 9-anthraldehyde and benzo[a]pyrene were of the same magnitude and indicated low-affinity binding to albumin. The constants obtained for the four dihydroxyanthraquinones were higher, but dissimilar, which suggests that the position of the functional group in anthracene molecule influences the binding constant. Moreover, this study suggests that the type of substituent plays a significant role in PAH-albumin complex formation. The carboxylic group increases the binding affinity of the anthracene molecule the most rather than the presence of both carbonyl and hydroxyl groups. The lowest affinity constants were obtained for aldehyde, methyl and carbonyl substituents.
EN
The effect of sulforaphane on human lymphoblastoid cells originating from a patient of a high cancer risk was studied. Sulforaphane (SFN) is a naturally occurring substance of chemopreventive activity. In our study, changes in cell growth, induction of apoptosis and phase 2 enzymes as well as glutathione level were examined. Apoptosis was tested by confocal microscopy at three stages: change in mitochondrial membrane potential, caspase activation and phosphatidylserine externalization. We show that SFN increases the activity of the detoxification system: it increases quinone reductase activity at low concentration (0.5-1 μM) and raises glutathione level in a dose-dependent manner. At higher doses (2.5-10 μM) sulforaphane is a cell growth modulator, as it caused cell growth cessation (IC50 = 3.875 μM), and apoptosis inducer. The results obtained suggest that sulforaphane acts as a chemopreventive agent in human lymphoblastoid cells.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.