Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A copper-zinc bath containing EDTA was used for deposition of multi-functional copper-zinc coatings. Copper substrates were used for pulse electrodeposition of copper-zinc coating. Microhardness and wear resistance of copper-zinc coatings has been studied. The films were characterized by scanning electron microscopy and X-ray diffraction. EDS and EDS-dot mapping were also performed to analyse the amount and the distribution of Cu-Zn atoms.
EN
Cobalt-Nickel alloys have been widely used for decoration, in magnetic recording devices and corrosion resistance applications, etc. In this study, the influences of cobalt amount in electrolyte on the magnetic and structural properties of the electrodeposited Co-Ni alloys were investigated. An electrolyte solution, consisting of cobalt sulfate, nickel sulfate, nickel chloride and boric acid, was used in electrodeposition. The electrochemical investigation of Co-Ni alloys was completed using cyclic voltammetry and galvanostatic studies. The morphological and structural analyses of the alloys were performed using inductively coupled plasma, scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer techniques. The effect of cobalt concentration on the magnetic properties, phase structure and grain size of the alloys was investigated. Magnetic hysteresis results indicate that the amount of the cobalt content in the electrolyte has a strong influence on the ferromagnetic behavior of fabricated alloys. Results of the study show that changing the electrodeposition parameters, such as composition of electrolyte solution, allows to fabricate alloys with different properties.
EN
In this study, cobalt-nickel (Co-Ni) alloys were deposited electrochemically onto aluminum substrates under applied current densities of 103.8, 138.4, 173 and 207.6 A m¯². Influence of the applied current density on the structural and magnetic properties of the Co-Ni alloys was investigated. The bath for Co-Ni alloys deposition was composed of 0.08 mol l¯¹ CoSO₄·7H₂O, 0.2 mol l¯¹ NiCl₂·6H₂O, 0.1 mol l¯¹ NiSO₄·6H₂O and 0.25 mol l¯¹ H₃BO₃. The electrochemical investigation of Co-Ni alloys was completed using cyclic voltammetry and galvanostatic studies. Inductively coupled plasma analysis has shown that the amount of the cobalt in the deposited alloy has decreased from 73.61% to 67.01% with the increase of the applied current density from 103.8 to 207.6 A m¯². According to the magnetic analysis results, the values of coercivity coefficient of the deposited Co-Ni alloys range between 115 and 150 Oe, confirming ferromagnetic behavior of the alloys. Experiment results indicate that magnetic and structural properties of the Co-Ni alloy deposits are greatly influenced by the applied current density in the electrodeposition system.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.