Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen.In this paper we continue the earlier started calculations of the optimum energy range for BNCT, taking into account the absorbed dose from fast neutrons.
EN
Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen.In this paper we present a filter/moderator system modeled with MCNP code in order to obtain an epithermal neutron beam for BNCT post at MARIA reactor in Swierk.
3
Content available remote

A virtual model of the patient's head for BNCT

51%
EN
The aim of the present work was creating a virtual phantom of a human head for BNCT, as a part of the BNCT programme project. This model is an amplification of the simple model described in earlier publications. It takes into account the major head organs as well as the scalp and skull. The chemical composition of all tissues was modelled according to the recommendations of the ICRP. The organs were parameterized using mathematical formulas based on the human head magnetic resonance images. The model was used for calculating the thermal neutron flux and the injuring (fast neutron, nitrogen and gamma) dose components for the head irradiated using the therapeutic neutron beam, whose parameters were obtained as the result of the modelling of the filter/moderator system for the BNCT therapeutic beam from the MARIA reactor.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.