Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The mechanism of spin polaron formation in moderately doped cuprates is discussed. These objects represent holes embedded into heavy clouds formed by spin fluctuations. Wave functions of spin polarons are spatially confined due to the increase in the exchange energy which is induced by hole motion giving rise to the creation of spin fluctuations. These wave functions are eigenstates of an "unperturbed" Hamiltonian which is defined by processes responsible for the tendency toward confinement. The eigenstates transform according to different irreducible representations of the point group reflecting the symmetry of the problem. Thus, the spin polarons being local wave functions resemble orbital states. The spectrum of optical conductivity in the mid-infrared range is determined by transitions between s-wave and p-wave spin polarons. The hybridization between different spin polarons which is induced by some high order processes gives rise to the formation of energy bands. The pronounced transfer of the spectral weight between different bands is induced by the coupling between spin fluctuations created by the hopping hole and local quantum fluctuations in the empty antiferromagnetic background from which an electron has been rejected, for example during the photoemission process. The form of the energy dispersion for spin polarons gives rise to the formation of a small Fermi surface at the low hole-doping range. These three above mentioned phenomena were observed in cuprates which seems to confirm the spin polaron scenario. The discussion of related experiments is the additional objective of this paper.
EN
In this paper we focus on the anomalous temperature dependence of the in-plane conductivity and symmetry mixing of the superconducting order parameter observed in various experiments on cuprates. We show that the one-band Hubbard model is not capable of describing the physics of cuprates because the kinetic energy is lowered in this model in the superconducting state, which contradicts experimental observations. The proper model to investigate doped, short-range antiferromagnets is the t-J model, for which our results agree with experiments. We analyze a spin polaron model, that is an effective model for a doped antiferromagnet. In the framework of this model we also study the superconducting order-parameter symmetry-mixing phenomenon. We show that the expected mixing of d-wave symmetry with p-wave symmetry takes place in the superconducting order-parameter at a finite value of the doping parameter. This symmetry mixing brakes the time-reversal symmetry.
EN
We argue that three gaps observed in underdoped cuprates can be attributed to the formation of antiferromagnetic spin polarons and bipolarons. Within the spin polaron scenario the antinodal pseudogap at he high energy scale originates from the change of the Fermi surface topology, induced by antiferromagnetic correlations. That change gives rise to the diminishing of the spectral weight at the antinodal region near the Brillouin zone boundary. We demonstrate that effect by analyzing effective models of doped antiferromagnets. The second type of pseudogap appearing at the intermediate energy scale originates from the phenomena which are precursory to superconductivity and predominantly concern the portion of the Fermi surface near the nodal region. In order to analyze the latter phenomenon we use the negative U Hubbard model, in which many details typical to spin polaron physics are neglected, but which contains the essential ingredient of it, that is the strong short range attraction. The lowest energy scale is related to the true superconducting gap which develops with doping, although both types of pseudogap diminish with doping. This behavior can be explained by the fact that the spin polaron band is empty in the undoped system and therefore the formation of the superconducting state in the system is forbidden. Due to a pedagogical character of this report, we present in the introduction a short overview of mostly recent experimental results which are related to the gap-pseudogap physics.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.