Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Tunneling Spectroscopy Studies of SmB_6 and YbB_{12}

100%
EN
Reported electron tunneling studies of SmB_6 and YbB_{12} in the temperature region with a strongly temperature activated transport reveal a qualitative change of tunneling regime upon cooling. While the differential conductance curves above 50 K resemble the tunneling between two different metals, the spectra observed at 4.2 K are typical of the tunneling between a metal and a (narrow-gap) valence fluctuating semiconductor.
2
76%
EN
We present results of transport and magnetic properties of three single-crystalline samples of the intermediate valence small-gap semiconductor SmB_{6} at low temperatures. The received resistivity dependences of the samples below 0.5 K exhibit an activated behavior with an energy gap of a few mK. The temperature dependences of the magnetic susceptibility show an increase below 15 K which can be accounted for by impurities, by bare Sm^{3+} ions or by a small amount of in-gap magnetic 4f^{5}5d^{1} states.
EN
We have studied the influence of hydrostatic pressure on the electrical resistivity of carbon-doped semimetal EuB₆ which orders ferromagnetically at T_{C}=3.9 K and is intrinsically inhomogeneous due to fluctuations of carbon content. We observed a shift of the low-temperature resistivity maximum from 4.6 K (at 1 bar) to 5.2 K (at 30.3 kbar) with increasing pressure. However, the maximum of the derivative dρ/dT(T), which reveals the temperature of ferromagnetic ordering, does not change its position with increasing pressure. This behaviour is different from stoichiometric EuB₆, where pressure increases the ferromagnetic ordering temperature. The origin of this discrepancy may lie in the increase of volume fraction of the non-ferromagnetic phase with increase of pressure. Additional magnetoresistance measurements at various pressures between 1.5 K and 30 K have shown that with increase of magnetic field the resistivity is monotonically decreasing, and above 1 T a transition to a monotonic resistivity behaviour (dρ/dT(T)>0) is observed. Our results support the picture that carbon-rich regions play a role of "spacers", which prevent the percolation of the ferromagnetic phase.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.