Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this note we explain the method how to find the resonance condition on quantum graphs, which is called pseudo-orbit expansion. In three examples with standard coupling we show in detail how to obtain the resonance condition. We focus on non-Weyl graphs, i.e. the graphs which have fewer resonances than expected. For these graphs we explain benefits of the method of "deleting edges" for simplifying the graph.
2
Content available remote

Asymptotics of Resonances Induced by Point Interactions

63%
EN
We consider the resonances of the self-adjoint three-dimensional Schrödinger operator with point interactions of constant strength supported on the set X={xₙ}_{n=1}^{N}. The size of X is defined by V_{X} = max_{π ∈ Π_{N}} ∑_{n=1}^{N} |xₙ - x_{π(n)}|, where Π_{N} is the family of all the permutations of the set {1,2,...,N}. We prove that the number of resonances counted with multiplicities and lying inside the disc of radius R behaves asymptotically linear W_{X}/πR + O(1) as R → ∞, where the constant W_{X} ∈ [0,V_{X}] can be seen as the effective size of X. Moreover, we show that there exist a configuration of any number of points such that W_{X}=V_{X}. Finally, we construct an example for N=4 with W_{X} < V_{X}, which can be viewed as an analogue of a quantum graph with non-Weyl asymptotics of resonances.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.