Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Although the delta ribozymes have been studied for more than ten years the most important information concerning their structure and mechanism of catalysis were only obtained very recently. The crystal structure of the genomic delta ribozyme turns out to be an excellent example of the extraordinary properties of RNA molecules to fold into uniquely compact structures. Details of the X-ray structure have greatly stimulated further studies on the folding of the ribozymes into functionally active molecules as well as on the mechanism of RNA catalysis. The ability of the delta ribozymes to carry out general acid-base catalysis by nucleotide side chains has been assumed in two proposed mechanisms of self-cleavage. Recently, considerable progress has been also made in characterizing the catalytic properties of trans-acting ribozyme variants that are potentially attractive tools in the strategy of directed RNA degradation.
EN
Two early nodulin 40 (enod40) genes, ENOD40-1, the shortest legume ENOD40 gene, and ENOD40-2, were isolated from Lupinus luteus, a legume with indeterminate nodules. Both genes were expressed at similar levels during symbiosis with nitrogen-fixing bacteria. ENOD40 phylogeny clustered the L. luteus genes with legumes forming determinate nodules and revealed peptide similarities. The ENOD40-1 small ORF A fused to a reporter gene was efficiently expressed in plant cells, indicating that the start codon is recognized for translation. The ENOD40-1 RNA structure predicted based on Pb(II)-induced cleavage and modeling revealed four structurally conserved domains, an absence of domain 4 characteristic for legumes of indeterminate nodules, and interactions between the conserved region I and a region located upstream of domain 6. Domain 2 contains Mg(II) ion binding sites essential for organizing RNA secondary structure. The differences between L. luteus and Glycine max ENOD40 RNA models suggest the possibility of a switch between two structural states of ENOD40 transcript.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.