Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
Flotacja jest jedną z najefektywniejszych metod wstępnej identyfikacji oddziaływań białko-błony lipidowe. W większości przypadków wykorzystuje się w niej małe jednowarstwowe pęcherzyki lipidowe, które służą jako modele błonowe i nie wymagają dodatkowych nośników, takich jak membrany czy nanocząstki polimerowe, które są często używane w innych metodach mających na celu identyfikację oddziaływań białkolipid. W poniższej pracy prezentujemy wyniki uzyskane podczas badań oddziaływań kwasu fosfatydowego i syndapiny. Omawiamy także niektóre techniczne aspekty metody, kładąc nacisk na to jak małe zmiany w warunkach metody mogą wpłynąć na otrzymywane wyniki.
EN
Flotation is one of the best method for preliminary identification of protein-lipid interactions. In most widely used approach it utilizes large unilamellar vesicles, that are excellent models of freestanding membranes and do not require any additional components, like solid supports or beads that are needed in other methods commonly used for protein-lipid binding studies. Here we present results obtained during our studies on phosphatidic acid - syndapin interactions and discuss some technical aspects of this method underlying how relatively small changes in the conditions can influence the results.
EN
Phosphatidic acid (PA) is the simplest glycerophospholipid naturally occurring in living organisms, and even though its content among other cellular lipids is minor, it is drawing more and more attention due to its multiple biological functions. PA is a precursor for other phospholipids, acts as a lipid second messenger and, due to its structural properties, is also a modulator of membrane shape. Although much is known about interaction of PA with its effectors, the molecular mechanisms remain unresolved to a large degree. Throughout many of the well-characterized PA cellular sensors, no conserved binding domain can be recognized. Moreover, not much is known about the cellular dynamics of PA and how it is distributed among subcellular compartments. Remarkably, PA can play distinct roles within each of these compartments. For example, in the nucleus it behaves as a mitogen, influencing gene expression regulation, and in the Golgi membrane it plays a role in membrane trafficking. Here, we discuss how a biophysical experimental approach enabled PA behavior to be described in the context of a lipid bilayer and to what extent various physicochemical conditions may modulate the functional properties of this lipid. Understanding these aspects would help to unravel specific mechanisms of PA-driven membrane transformations and protein recruitment and thus would lead to a clearer picture of the biological role of PA.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.