Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Flower structure in grasses is very unique. There are no petals or sepals like in eudicots but instead flowers develop bract-like structures - palea and lemma. Reproductive organs are enclosed by round lodicule that not only protects reproductive organs but also plays an important role during flower opening. The first genetic model for floral organ development was proposed 25 years ago and it was based on the research on model eudicots. Since then, studies have been carried out to answer the question whether this model could be applicable in the case of monocots. Genes from all classes found in eudicots have been also identified in genomes of such monocots like rice, maize or barley. What's more, it seems that miRNA-mediated regulation of floral organ genes that was observed in the case of Arabidopsis thaliana also takes place in monocots. MiRNA172, miRNA159, miRNA171 and miRNA396 regulate expression of floral organ identity genes in barley, rice and maize, affecting various features of the flower structure, ranging from formation of lemma and palea to the development of reproductive organs. A model of floral development in grasses and its genetic regulation is not yet fully characterized. Further studies on both, the model eudicots and grasses, are needed to unravel this topic. This review provides general overview of genetic model of flower organ identity specification in monocots and it's miRNA-mediated regulation.
EN
Interferons (IFNs) induce gene expression by phosphorylating latent transcription factors belonging to the signal transducer and activator of transcription (STAT) family, mediated by janus kinases (Jaks). STAT dimers directly activate genes containing the IFNγ activation site (GAS) DNA element, with different STAT proteins displaying slightly different intrinsic DNA binding specificities. The combinatorial association of STATs with the additional DNA binding adaptor protein interferon regulatory factor (IRF)9 expands the range of enhancer elements that can be targeted by the JAK-STAT pathway to interferon-stimulated response element (ISRE) and IRF response element (IRE). Based on the amino-acid sequence similarity within the IRF family and functional overlap with the STAT family, in this paper we hypothesize that other IRF members could serve as adapter proteins for the STATs during IFN responses to redirect them to subsets of ISRE, GAS and/or IRE-containing IFN-stimulated genes (ISGs). In addition, the fact that STAT2 homodimers are not capable of binding consensus GAS sites leaves the possibility for a novel type of DNA-binding site bound by STAT2 homodimers and potentially other STAT complexes.
EN
MicroRNAs are 19- to 24-nt-long single-stranded RNAs that are crucial regulators of gene expression which control plant development and response to environmental cues. We have analyzed microtranscriptomes of five barley developmental stages. Generally, during the barley development, miR168-3p and miR1432-5p levels increase while the 5'U-miR156-5p level decreases (with exception for the 2-week-old barley). We have identified two miR156-5p izomiRs (called 5'U-miR156-5p [20 nt] and 5'UU-miR156-5p [21 nt]), which were expressed differently during barley development. The 5' U-miR156-5p level decreased in 3-week-, 6-week-, and 68-day-old barley, when compared to the 1-week-old plants. Meanwhile, the 5' UU-miR156-5p level increased significantly in the 68-day-old barley plants. Moreover, only the 5' U-miR156 isomiR recognizes and guides unique transcription factor mRNAs from the Squamosa Promoter Binding Protein-Like (SPL) family. We identified many non-canonical microRNAs with changed expression levels during the barley development. Here, we present the profiles of microRNA expression characteristics for particular barley developmental stages. These analyses are accompanied by the experimental degradome analysis of miRNA targets.
EN
MicroRNAs are short molecules of 21-24 nt in length. They are present in all eukaryotic organisms and regulate gene expression by guiding posttranscriptional silencing of mRNAs. In plants, they are key players in signal transduction, growth and development, and in response to abiotic and biotic stresses. Barley (Hordeum vulgare) is an economically important monocotyledonous crop plant. Drought is the world's main cause of loss in cereal production. We have constructed a high-throughput Real-Time RT-qPCR platform for parallel determination of 159 barley primary microRNAs' levels. The platform was tested for two drought-and-rehydration-treated barley genotypes (Rolap and Sebastian). We have determined changes in the expression of primary microRNAs responding to mild drought, severe drought, and rehydration. Based on the results obtained, we conclude that alteration in the primary microRNA expression is relative to the stress's intensity. Mild drought and rehydration mostly decrease the pri-miRNA levels in both of the tested genotypes. Severe drought mainly induces the primary microRNA expression. The main difference between the genotypes tested was a much-stronger induction of pri-miRNAs in Rolap encountering severe drought. The primary microRNAs respond dynamically to mild drought, severe drought, and rehydration treatments. We propose that some of the individual pri-miRNAs could be used as drought stress or rehydration markers. The usage of the platform in biotechnology is also postulated.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.