Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The aim of the current investigation was to examine gender differences in limb and joint stiffness characteristics during the fencing lunge. Ten male and ten female fencers completed simulated lunge movements. Lower limb kinematics were collected using an eight camera optoelectric motion capture system which operated at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. Gender differences in limb joint stiffness parameters were examined statistically using independent samples t-tests. The results showed firstly that both limb (male = 64.22 ±19.12, female = 75.09 ±22.15 N.kg.m) and hip stiffness (male = 10.50 ±6.00, female = 25.89 ±15.01 Nm.kg.rad) were significantly greater in female fencers. In addition it was also demonstrated that knee moment (male = 1.64 ±0.23, female = 2.00 ±0.75 Nm.kg) was significantly larger in females. On the basis of these observations, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between genders in relation to fencing.
EN
Background: Recent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge. Material/Methods: Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed. Results: The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females. Conclusions: This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.
Human Movement
|
2013
|
vol. 14
|
issue 3
229-237
EN
Purpose. The lunge is a fundamental offensive fencing technique, common to all contemporary fencing styles. Therefore, when using 3-D kinematic analysis to quantify lower extremity rotations during the fencing lunge, it is important for researchers to correctly interpret this movement. Locating the centre of the hip is required to accurately quantify hip and knee joint rotations, with three non-invasive techniques using anatomical, functional and projection methods currently available for the estimation of hip joint centre. This study investigated the influence of these three techniques on hip and knee joint kinematics during the fencing lunge. Methods. Three-dimensional kinematics of the lunge were collected from 13 experienced epee fencers using an eight-camera motion capture system. The 3-D kinematics of the lunge were quantified using the three hip joint centre estimation techniques. Repeated measures ANOVAs were used to compare the discrete 3-D kinematic parameters, and intra-class correlations were employed to identify similarity across the 3-D kinematic waveforms from the three techniques. Results. The results indicate that whilst the kinematic waveforms were similar (R2 ≥0.96); significant differences in discrete parameters were also evident at both the hip and knee joint in the coronal and transverse planes. Conclusions. It appears based on these observations that different hip joint centre locations can significantly influence the resultant kinematic parameters and cannot be used interchangeably.
EN
Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.