Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Recent advances at Institute of Grassland and Environmental Research (Aberystwyth, U.K.) in cytogenetics of the Lolium/Festuca complex places us in the advantageous position of being able to map genes of agronomic importance onto chromosome arms using fluorescence in situ hybridization (FISH). The ability to physically map genes leads to the capability for 'dissecting' quantitative traits into their different components and will lead to better understanding of the complex physiological processes involved and the identification of their genetic control. By tagging genes of interest, using molecular and morphological markers, it will be possible to select and combine suites of desirable genes in a single genotype and thus produce novel cultivars by conventional breeding procedures. Programmes for introgression depend on the relationships between species and on levels of chromosome pairing. Phylogenetic relationships within the Lolium/Festuca complex are being determined using both genomic in situ hybridization (GISH) and FISH. With recent advances in genetic manipulation within the Lolium/Festuca complex, opportunities now arise for gene transfer from Lolium and Festuca species into other important agricultural crops.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.