Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Building on the effective-mass envelope function theory, this paper focuses on the study of the energy band and the absorption coefficient of InAs/In_{x}Ga_{1 - x}As quantum dots in a well (DWELL) structure. In contrast to InAs/In_{0.15}Ga_{0.85}As quantum DWELL, the InAs/In_{0.2}Ga_{0.8}As quantum DWELL has lower ground states. With the thickness of In_{0.15}Ga_{0.85}As layer changing from 7 nm to 9 nm and In_{0.2}Ga_{0.8}As layer changing from 9 nm to 12 nm, the calculation shows that their absorption coefficient spectra takes a red shift in the long-wave infrared and far-infrared ranges, respectively. Moreover, when the thickness of the In_{x}Ga_{1 - x}As layer is defined as 9 nm, the absorption coefficient spectra of InAs/In_{0.2}Ga_{0.8}As DWELL shows a obvious red shift comparing with that of InAs/In_{0.15}Ga_{0.85}As DWELL.
EN
In order to investigate the effect of granule shape on the giant magnetoresistance, assuming that granular films consist of ellipsoidal ferromagnetic granules embedded in a nonmagnetic metal matrix and the ellipsoidal granules have different demagnetizing factors in three directions, we combined two-current model with the effective medium theory to investigate the effect of granule shape on the giant magnetoresistance. The results revealed that the giant magnetoresistance in granular films depended strongly on the granule shape and was between those for current perpendicular to the plane of the layers and current in the plane of the layers in magnetic multilayers.
EN
The vibrational dynamics of water around glycine was investigated by using Raman spectroscopy and inelastic neutron scattering. Experiments of deuterated glycine versus deuterium were performed as comparison. The study shows that for glycine, the exchange of proton-deuteron on the active NH_3^+ side was easy, whereas there was hardly exchange on the CH_2 side. Comparing different proportion of glycine vs. water molecules we obtained that the presence of water hardly changes the main features of glycine illustrating its hydrophobic character. The intralayer hydrogen bonds of glycine crystal are difficult to be replaced due to its stronger bond than water.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.