Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
To estimate the skin dose to the patient from the treatment planning, the knowledge about exit dose is essential, which is calculated from the percentage depth dose. In this study 6 MV and 18 MV beams from linear accelerator and cobalt-60 beams were used. The ionometric measurements were carried out with parallel plate chamber of sensitive volume 0.16 cc. Parallel plate chamber was fitted in to 30 x 30 cm2 polystyrene phantom at a fixed FSD with the measuring entrance window facing farther from the source. The field size for this measuring condition was maintained at 10 x 10 cm2. The ionization measurements were also carried out by changing the thickness of the polystyrene phantom at the entrance side of the point of measurement. In order to find out the variation of relative exit dose (RED) with field size the measurements were carried out without and with the full back-scattering material (27.2 gm/cm2) placed beyond the entrance window of the chamber. The measurements were also done for the entrance polystyrene phantom thicknesses of 10, 20 and 30 cm for the field size ranging from 5 x 5 cm2 to 30 x 30 cm2. The dose at the exit surface with no backscatter material is about 4.4%, 3.7% and 5.8% less than the dose with the full backscatter material present beyond the point of measurement for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The reduction in exit dose does not depend much of the phantom thickness through which the beam traverses before exiting at the chamber side. Dose enhancements of about 1.03 times were observed for a field size of 5 x 5 cm2 for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The dose enhancement factor (DEF) values were noticed to vary with field size beyond 15 x 15 cm2 for all the energies studied. Also it can be observed that the dose enhancement factor (DEF) values do not depend on the thickness of the phantom material through which the beam has traversed. The DEF values were found to vary marginally for different phantom material thickness for the particular field size. The study indicates that a reduction of 4.4% and 3.7% in relative exit dose when there is no backscatter material present for 6 and 18 MV X-rays for most of the clinically used radiotherapy portals. The measured exit dose was found to be mostly independent of field size and the thickness of the phantom material through which the beam gets transmitted at the entrance side. An addition of backscatter material of thickness equal to two-thirds of the dmax depth of the radiation beam concerned results in full dose at the exit side.
EN
Many modern linear accelerators are equipped with asymmetric collimators or jaws that can be moved independently. Asymmetric jaws have got many clinical applications in radiation therapy. In the present study, the dosimetric characteristics of asymmetric collimators from our linear accelerator with 6 and 18 MV X-rays were carried out. The field size factors (FSF) and half value layer (HVL) were measured in a water phantom using 0.6 cc Farmer chamber for symmetric and asymmetric fields for both 6 and 18 MV X-rays. Measurements of beam penumbra, percentage depth dose (PDD), cross beam profiles and calculated isodose curves were measured by RFA 300 for both asymmetric and symmetric fields. The FSF were found to agree with in 3% for symmetric and asymmetric fields. The HVL in water was found to be 15.8 cm and 14.4 cm for 6 MV photons and 26 cm and 22.9 cm for 18 MV photons at the central axis and at 20 cm off the central axis. At 30 cm depth the percentage depth dose for symmetric and asymmetric fields were found to differ as high as 6% for 6 MV and 4% for 18 MV fields. No observable difference in penumbra was noticed for symmetric and asymmetric fields of same dimensions. The constrictions of isodose curves at the edge nearer to central axis were noticed for asymmetrically placed fields. The observed differences could be due to the passage of primary beam through differential thickness of the flattening filter which alters the beam quality.
EN
A uniform dose to the target site is required with a knowledge of delivered dose, central axis depth dose and beam flatness for successful electron treatment at an extended source to surface distance (SSD). In an extended SSD treatment under dosage of the lateral tissue may occur due to reduced beam flatness. To study the changes in beam characteristics, the depth dose curves, beam flatness and isodose distributions were measured at different SSDs from 100 to 120 cm for clinically used field sizes from (4×4) to (25×25) cm2 and beam energies ranging from 6 MeV to 20 MeV. Our results suggest that the change in depth dose is minimal except in the buildup region for most energy. In general surface dose is decreased as the SSD increased moderately. It was observed that the loss in beam flatness is significant for smaller fields, higher isodose lines, and lower energies. The penumbra enlarged and the uniformity index reduced with increasing SSD.
EN
Accurate measurement of transit time of the HDR brachytherapy source of a remote after-loading unit is necessary to calculate the total radiation dose given to the treatment volume. Presently, most of the HDR brachytherapy treatment planning systems neglect the transit time in the computation of dose. The aim of this investigation is to use a well type ionization chamber to measure the transit time during the source movement between two dwell positions. As well type ionization chamber and a precision electrometer (manufacturer CD instruments, Bangalore) were used to measure the charge generated during the movement of the Ir-192 source of a Gammamed HDR brachytherapy unit with an interstitial needle. Effective transit time and effective speed were determined on the basis of methodology described by Sahoo [2]. Corrections were done on the basis of relative sensitivity values for varaious dwell position in the ionization chamber. In the present study the variation of effective speed with interdwell distance was minimal as compared with that of Sahoo [2]. The effective transit times were 0.129, 0.182, 0.301, 0.402, 0.701, and 0.993 seconds for 1, 2, 4, 6, 8 and 10 cm interdwell separations respectively. The effective transit times in the present study were higher than those of Sahoo [2]. Software modification accounting for the dynamic dose should be incorporated into all HDR planning systems. Such an improvement would enhance the safety and accuracy of HDR brachytherapy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.