Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This work is devoted to direct process of molten salt synthesis and studies on barium titanate (BaTiO_3, BT), belonging to ferroelectric crystal group type perovskite BO_3. This material thanks to its noncentrosymmetric, fully tetragonal structure possesses at room temperature (up to T_{c} = 135°C) the spontaneous polarization. Due to this fact BT can be applied as piezoelectric material in electromechanical transducers, so as an excellent dielectric in multilayer capacitors and many other devices. With grain size reduction of BT ceramics to nanometric level it leads to permanent transformation into paraelectric state with minimized energy and to lose its specific features as a consequence, even at room temperature. In case of structural agent, means as tetragonality factor, it has a crucial influence on investigated material properties and it is referred in current paper. It is a row of complementary researching methods allows to confirm the presence of desired tetragonal BT phase in nano or micropowders obtained by means of molten salt synthesis route. For different temperature variants of synthesis X-ray diffraction analysis were undertaken and precise unit cells parameters both with tetragonality factor were determined using the Cohen method. Based on structural studies the lattice strains and crystallite sizes were estimated through the Williamson-Hall method. Using scanning electron microscopy the powders morphology and grain size distribution were done. Dielectric measurements of sintered BT ceramics were carried out to determine the Curie temperatures, dielectric permittivities and loss factors in prepared capacitors.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.