Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Seventy-two Xinjiang Triticum and Triticum polonicum accessions were subjected to AFLP analyses to discuss the origin of Triticum petropavlovskyi. A total of 91 putative loci were produced by four primer combinations. Among them 56 loci were polymorphic, which is equivalent to 61.53 % of the total number of putative loci. Genetic diversity among 11 T. petropavlovskyi accessions was narrow due to the lowest number (32) of polymorphic loci among the wheat species. Forty four polymorphic loci were found in T. aestivum and T. compactum, whereas the highest polymorphism was observed in T. polonicum. On the basis of the UPGMA clustering and PCO grouping and genetic similarity estimates from the AFLPs, we noted that T. petropavlovskyi was more closely related to the Chinese accessions of T. polonicum than to T. polonicum from other countries. Two accessions of T. aestivum were grouped with T. petropavlovskyi in the UPGMA clustering. Both of them were similar to T. petropavlovskyi in respect of spike structure, i.e. the presence of awn, glume awn and also the presence of leaf pubescence. Six loci, which were commonly absent in Chinese T. polonicum, were also absent in almost all of the T. petropavlovskyi accessions. Findings of this study reduced the probability of an independent allopolyploidization event in the origin of T. petropavlovskyi and indicated a greater degree of gene flow between T. aestivum and T. polonicum leading to T. petropavlovskyi. It is most likely that the P-gene of T. petropavlovskyi hexaploid wheat was introduced from T. polonicum to T. aestivum via a spontaneous introgression or breeding effort.
EN
Seventy-two Xinjiang Triticum and Triticum polonicum accessions were subjected to AFLP analyses to discuss the origin of Triticum petropavlovskyi. A total of 91 putative loci were produced by four primer combinations. Among them 56 loci were polymorphic, which is equivalent to 61.53 % of the total number of putative loci. Genetic diversity among 11 T. petropavlovskyi accessions was narrow due to the lowest number (32) of polymorphic loci among the wheat species. Forty four polymorphic loci were found in T. aestivum and T. compactum, whereas the highest polymorphism was observed in T. polonicum. On the basis of the UPGMA clustering and PCO grouping and genetic similarity estimates from the AFLPs, we noted that T. petropavlovskyi was more closely related to the Chinese accessions of T. polonicum than to T. polonicum from other countries. Two accessions of T. aestivum were grouped with T. petropavlovskyi in the UPGMA clustering. Both of them were similar to T. petropavlovskyi in respect of spike structure, i.e. the presence of awn, glume awn and also the presence of leaf pubescence. Six loci, which were commonly absent in Chinese T. polonicum, were also absent in almost all of the T. petropavlovskyi accessions. Findings of this study reduced the probability of an independent allopolyploidization event in the origin of T. petropavlovskyi and indicated a greater degree of gene flow between T. aestivum and T. polonicum leading to T. petropavlovskyi. It is most likely that the P-gene of T. petropavlovskyi hexaploid wheat was introduced from T. polonicum to T. aestivum via a spontaneous introgression or breeding effort.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.