Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The electronic stopping cross-section is calculated in the spirit of the Bethe theory. Interaction potential between projectile and target is regarded to have a Coulombic character and we have modified it to take into account velocity dependences on a number of bound electrons of projectile and an effective charge of projectile and target. These velocity dependences are obtained from the Bohr adiabatic criterion using the Thomas-Fermi atomic model. We have get the electronic stopping cross-section expression using the Bethe approximation; we obtained the stopping cross-section of C and Al for C, O, and Si ions from this expression and compared our results with experiment and other theoretical calculations.
EN
In this study, we investigated linear attenuation coefficient (μ ), half value layer, tenth value layer at 243, 344, 866, 1088, 1112, 1528 keV. Mechanical properties of cements containing nanosized powders (nano-SiO₂, nano-Fe₂O₃, nano-Al₂O₃) are obtained. According to compressive strength results nano-SiO₂ added cementitious material gave the highest strength. Moreover, all the nanopowders added samples showed higher compressive strength with respect to reference sample. The experimental linear mass attenuation coefficients μ , half value layer, tenth value layer for cementitious material were compared with theoretical values obtained using XCOM. The experimental results were found to be in good agreement with the theoretical values.
EN
An analytical formula of the electronic stopping power expression in this study was derived for swift boron-like and carbon-like ions by using first-order perturbation theory and frozen-charge-state model. The Hartree- Fock-Slater determinant was used for the description of the bound electrons attached to ions in the ground state and orbital-screening parameter was determined by variational method. The calculated ground state energies in this study were compared with the results of Clementi-Roetti and they are in good agreement with 5%. It has been observed that the difference of energy loss for boron-like and carbon-like projectiles in a frozen-charge state increases as an atomic number increases. Furthermore, the analytical expression of the effective charge of boron-like and carbon-like projectiles was derived.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.