Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We investigate feasibility of comparison between the zero field splitting parameters obtained experimentally based on the spin Hamiltonian with the fictitious spin S'=1 and those with the effective spin S̃=2. The former zero field splitting parameters have recently been measured for Fe²⁺ ions in forsterite Mg₂SiO₄, whereas the latter zero field splitting parameters are available in literature, e.g. for Fe²⁺ and Cr²⁺ (S̃=2) ions. It turns out that no unique direct comparison is feasible and hence appropriate conversion relations need to be derived. Methodology for such conversions is outlined. Various combinations of the possible energy level schemes for the spin S̃=2 and S'=1 are briefly described. Illustrative preliminary results concerning appropriate conversions of the second-rank zero field splitting parameters measured by high-frequency EMR for Fe²⁺ in natural and synthetic forsterite are presented. Detailed results and full analysis will be given elsewhere.
EN
The interplay between the fictitious spin S' = 1/2 and the effective spin S̃=3/2 for Co²⁺(3d⁷) ions is considered. The available experimental data on the Ze g_{i}' factors for the two Co²⁺ complexes in PbMoO₄ obtained using the fictitious "spin" S'=1/2 description serve for determination of the Zeeman g_{i} factors corresponding to the effective spin S̃ =3/2. The second-rank zero-field splitting parameters D and E (S̃ = 3/2) are also indirectly determined from the experimental EMR data by employing the formulas arising from projection of the g_{i}(S̃=3/2) factors onto the g_{i}'(S' = 1/2) factors. The so-determined second-rank zero-field splitting parameters and g_{i}(S̃ = 3/2) factors will enable comparison with the respective quantities obtained in a subsequent paper using a combined modeling approach.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.