Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The energy and momentum distributions of a regular black hole in a four-dimensional, asymptotically de Sitter spacetime geometry are computed, whereby the Einstein, Landau-Lifshitz, Weinberg and Møller energy-momentum complexes are utilized. It is found, for all prescriptions applied, that the momentum distribution vanishes, while the energy distribution depends on the mass parameter M, the electric charge Q, and the cosmological constant Λ. In addition, various limiting cases are discussed.
2
Content available remote

Unification Principle and a Geometric Field Theory

84%
EN
In the context of the geometrization philosophy, a covariant field theory is constructed. The theory satisfies the unification principle. The field equations of the theory are constructed depending on a general differential identity in the geometry used. The Lagrangian scalar used in the formalism is neither curvature scalar nor torsion scalar, but an alloy made of both, the W-scalar. The physical contents of the theory are explored depending on different methods. The analysis shows that the theory is capable of dealing with gravity, electromagnetism and material distribution with possible mutual interactions. The theory is shown to cover the domain of general relativity under certain conditions.
3
Content available remote

Sources of inertia in an expanding universe

84%
Open Physics
|
2015
|
vol. 13
|
issue 1
EN
In a cosmological perspective, gravitational induction is explored as a source to mechanical inertia in line with Mach’s principle. Within the standard model of cosmos, considering the expansion of the universe and the necessity of retarded interactions, it is found that the assumed dynamics may account for a significant part of an object’s inertia.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.