Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The optical excitonic Aharonov-Bohm effect in type-I three-dimensional (In,Ga)As/GaAs nanorings is theoretically explored. The single-particle states of the electron and the hole are extracted from the effective mass theory in the presence of inhomogeneous strain, and an exact numerical diagonalization approach is used to compute the exciton states and the oscillator strength f_{x} for exciton recombination. We studied both the large lithographically-defined and small self-assembled rings. Only in smaller self-assembled nanorings we found optical excitonic Aharonov-Bohm effect. Those oscillations are established by anticrossings between the optically active exciton states with zero orbital momentum. In lithographically defined rings, whose average radius is 33 nm, f_{x} shows no oscillations, whereas in the smaller self-assembled nanoring with average radius of 11.5 nm oscillations in f_{x} for the ground exciton state are found as function of the magnetic field that is superposed on a linear dependence. These oscillations are smeared out at finite temperature, thus photoluminescence intensity exhibits step-like variation with magnetic field even at temperature as small as 4.2 K.
|
|
issue 5
733-737
EN
Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases. Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov-Bohm effect may occur in concentric nanorings.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.