Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

AFM, XRD and HRTEM Studies οf Annealed FePd Thin Films

100%
EN
Ferromagnetic FePd L 1_{0} ordered alloys are highly expected as forthcoming high-density recording materials, because they reveal a large perpendicular magnetocrystalline anisotropy [1]. The value of the magnetic anisotropy of FePd alloy strongly depends on the alloy composition, degree of alloy order as well as on the crystallographic grain orientation. In particular, to obtain the perpendicular anisotropy, it is necessary to get the films with (001) texture. One of the successful methods, which allows one to obtain highly ordered alloy, is a subsequent deposition of Fe and Pd layers, followed by an annealing at high temperature. This paper presents the study of the FePd thin alloy film structure changing in the result of high temperature annealing. During the annealing in high vacuum, the measurements of electrical resistance were performed, indicating the regions of different structure evolution. Changes in the crystal structure and surface morphology induced by thermal treatment were investigated by X-ray diffraction, atomic force microscopy, as well as high resolution transmission electron microscopy and then compared with electrical resistivity measurement. The slow thermal annealing of the deposited layers leads to the formation of L 1_{0} ordered FePd alloy with preferred (111) grain orientation. After the annealing at the highest used temperature, the dewetting process was observed, resulting in a creation of well oriented, regular nanoparticles.
EN
Direct laser interference lithography is a new and low cost technique which can generate the line- or dot-like periodic patterns over large areas. In the present work, we report on direct fabrication of micrometer structures on Si surface. In the experiments the pulsed high power Nd:YAG laser operating at 1064 nm wavelength was used. Two-beam configuration with an angle of incidence of 40° was employed and different laser fluences up to 2.11 J/cm^2 were tested. Areas about 1 cm in diameter have been processed with a single pulse of 10 ns. The laser treated samples were analyzed by atomic force microscopy to investigate the surface topography and to measure the size and depth of the achieved structures. We observed periodic line-like arrays with grating period of the order of 1 μm.
EN
Chemical, magnetic, and phase composition analysis of deposits taken from sedimentation tank from oil plant in Argentina was carried out. Energy dispersive spectroscopy indicates iron as a main sediment component with the site dependent fraction ranging from 11% to 78% (weight percentage). Moreover, large fractions of sulfur (4%-33%), oxygen (8%-28%), calcium (1%-14%), and silicon (1%-11%) were found. The chemical analysis performed with wet chemical methods also indicated Fe as a main component (about 35%), additionally a large fraction ( ≈ 15%) of the sulfur and under 10% fractions of calcium ( ≈ 7%), carbon ( ≈ 6%), and silicon ( ≈ 5%) were found in the sample. The phase composition studies performed using X-ray diffraction showed magnetite - Fe_3O_4, goethite - α-FeOOH, lepidocrocite - γ-FeOOH, siderite - FeCO_3, and iron-sulfur compounds (mackinawite - FeS, stoichiometric FeS, greigite - Fe_3S_4) and other compounds like aragonite - CaCO_3, calcite - CaCO_3, anorthite - CaAl_2Si_2O_8, quartz - SiO_2 and barium sulphate Ba(SO_3)_{0.3}(SO_4)_{0.7}. Studies performed by the Mössbauer spectroscopy, confirmed presence of majority of compounds identified by X-ray diffraction. Magnetic AC susceptibility measurements show that magnetite is a main component of the studied deposit. High concentration of the magnetic compounds deposited in the sedimentation tank points to the advisability to install the magnetic device designed to support water treatment processes, i.e.: flocculation, coagulation, sedimentation, and filtration. This device could simultaneously inhibit microbiological and chemical corrosion.
4
100%
EN
We simulated and experimentally investigated the formation of periodic structures generated by multibeam interference patterning. The simulations at the different setup geometry show that resulting interference pattern is quasi-periodical. The calculated patterns show that the symmetries of the interference maxima depend mostly on the angles of incidence and that a wide variety of patterns can be obtained. Because of the difficulty in aligning four beams sufficiently well to avoid secondary periodicities, for testing we used a three-beam interference configuration. Atomic force microscopy images showed good correspondence between the experimental and simulated interference image, with flat islands which correspond to the destructive interference and narrow channels which correspond to the constructive interference fringes.
EN
An optical strain sensor was developed for use in stretchable electronics. It consists of a diffraction grating formed directly on the examined surface illuminated by a laser beam which creates interference pattern. This pattern can then be used to determine axial and lateral strains for a uniaxial stress states. Direct laser interference patterning was employed as a fast processing tool for the preparation of micro- and sub-microgratings. Two coherent beams of Nd:YAG laser with 532 nm wavelength and pulse duration of 10 ns were used to selectively remove material from the irradiated sample surface. This technique creates periodic pattern on the metallized surface of polymeric substrates. New sensors formed by direct laser interference patterning method were able to resolve higher order diffraction maxima, which would be of benefit for strain measurement application. Experimental setup for tensile tests was composed of laser probe, the sensor element, and CCD camera. To extract strain values, we analysed acquired interference pattern images in real time software, developed with LabVIEW environment. This kind of contactless strain sensor is suitable for examination of stretchable electronics component for which conventional tensile tests are either not acceptable or can interfere with its normal operation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.