Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We report on optical orientation of excitons and trions (singly charged exciton) in individual charge-tunable self-assembled InAs/GaAs quantum dots. When the number of electrons varies from 0 to 2, the trion photoluminescence under quasi-resonant excitation gets progressively polarized from zero to ≈100%. We discuss this behavior as the efficient quenching of exciton spin quantum beats in anisotropic quantum dots due to the trion formation. This result indicates a long hole-spin relaxation time larger than the radiative lifetime, confirmed by time-resolved photoluminescence measurements carried out on a quantum dots ensemble.
EN
Magnetic field and temperature dependent photoluminescence studies on neutral and charged excitons in individual InAs quantum dots allow us to uncover different mechanisms by which the discrete quantum dot states are coupled to delocalized continuum states in a quantum well (the wetting layer). The behaviour of the neutral and singly charged excitons can be explained taking only discrete quantum dot states into account. For doubly and triply charged excitons we have to consider spin dependent coherent and incoherent interactions between discrete quantum dot states and delocalized wetting layer states.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.