Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
During myotomal myogenesis in Hymenochirus boettgeri primary myoblasts differentiate into morphologically and functionally mature, mononucleate myotubes. Further muscle development in the studied species is due to fusion of mesenchymal cells with the latter, resulting in the presence of two classes of nuclei in the myotube: large of myotomal origin and small of mesenchymal origin. Densitometric measurements of DNA content revealed that the myotube nuclei at stages 35 reached values close to 4C DNA (3, 3C DNA), while at a later stage (42) the values were equal to 4C. Conversely, the secondary myoblast nuclei following the fusion with the myotube at stage 42 had 2C DNA ? a content comparable to that found in erythrocyte nuclei. PCNA (Proliferating Cell Nuclear Antigen) ? marker of S-phase of cell cycle, detected in the myotube nuclei (at stages 35, 42) appears during DNA replication.
EN
Compared to teleost fishes, a unique character of the myogenesis of the plesiomorphic A. baeri is the fusion of myoblasts derived from the somite, leading to the formation of multinucleate muscle lamellae. Then, the lamellae are converted into cylindrical muscle fibres. The mechanism of transformation of lamellae into fibres is still debatable. Early embryonic muscle growth is mainly due to the hypertrophy of somite-cell derived stock. After hatching, hypertrophic growth occurs parallel to hyperplastic growth. Proliferatively active mesenchymal cells, which migrate from the intermyotomal space into the myotomes, participate in both processes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.