Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Track etched membranes are porous systems consisting of a thin polymer foil with channels from surface to surface. Latent ion tracks are the result of the passage of swift ions through solid matter and they can be etched selectively. As a result, conical, cylindrical or other shape channels can be obtained. The increasing interest in the polymer track etched membranes with nanochannels is connected with development and creation of nanoporous materials of unique properties. The template synthesis method based on deposition of materials inside well-defined uniform pores of membranes offers unique possibilities of formation of one-dimensional, high aspect ratio (length to diameter) cylindrical species having form of rods, wires, tubules, multiwall tubules and multilayer rods, practically from any solid material. Metal-organic frameworks are a class of hybrid materials comprising metal ion-based vertices and organic ligands (linkers) which serve to connect the vertices into one-, two- or three-dimensional periodic structures. A specific property of porous structures is their intrinsic porosity, which renders them potentially useful for gas storage, separation and catalysis. The possibility of obtaining a new composite material: polymeric track etched membrane with pores filled with hybrid porous material has been demonstrated.
EN
Enrichment of AISI 316L steel surface layers with rare earth elements was carried out using two methods with ion beam applying. The first one was the ion implantation with the doses in the range of 1 × 10^{15} cm^{-2} up to 5 × 10^{17} cm^{-2} where mishmetal (Ce+La) was used as the ion source. The second method was the high intensity pulsed plasma beams. The plasma pulses contained both ions/atoms of Ce+La from the electrodes material (mishmetal). The pulse energy densities (3 J/cm^2) were sufficient to melt the near surface layer of the steel and introduce those elements into the surface layer. The aim of this work was to investigate the changes of stainless steel surface properties (morphology, rare earth elements concentration, presence of identified phases) after the rare earth elements addition with or without melting. Scanning electron microscopy, energy dispersion spectroscopy, and X-ray diffraction analysis were used for initial and modified surface characterisation. Grazing-incidence X-ray diffraction shows differences in the identified phase presence in the modified surface layer connected with the modification method.
EN
It is well documented that the high oxygen affinity elements such as Y, Ce, La, Er and other rare earth elements added to steel in small amounts can improve their high temperature oxidation resistance. Rare earth elements can be either alloyed during the steel making process or introduced through surface treatment techniques. Improvement of high temperature oxidation resistance of AISI 316 L steel by incorporation Ce and La elements into its near surface region using high intensity pulsed plasma beams in so-called deposition by the pulse erosion mode was investigated in the present work. The samples were irradiated with 3 short (μs scale) intense (energy density 3 J/cm^2) plasma pulses. Heating and cooling processes occur under non-equilibrium conditions. In all samples the near surface layer of the thickness in μm range was melted and simultaneously doped with cerium and lanthanum. The modified samples were oxidized at 1000°C for 100 h in air. The obtained effects were: oxide scales formed on the treated samples were more fine-grained, compact and adhering better that those formed on the un-treated samples.
EN
Stainless steels with their very good corrosion resistance are used in nuclear, petrochemical, chemical, pulp and paper chemical industries as well as in food processing and others. Unfortunately, poor tribological properties of this kind of steel can be the limitation in the situations in which wear can be responsible for material degradation, like corrosion-erosion. Improvement of the wear resistance of austenitic stainless steels can be achieved using different methods of surface modification, for example: enrichment of the surface layer with reactive elements. Rare earth elements were implanted to AISI 316L austenitic stainless steel using the MEVVA type implanter (65 kV). Different rare earth elements implanted doses: 10¹⁵, 5×10¹⁵, and 5×10¹⁶ ion/cm² were applied. Initial and modified surfaces were investigated using scanning electron microscopy, elemental analysis with the energy dispersive spectroscopy method, X-ray diffraction analysis and the Rutherford backscattered spectroscopy. Tribological properties were investigated using the Amsler method. The most important result was that the surface layers of AISI 316L steel implanted with rare earth elements showed improvement of tribological properties as compared with the initial material.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.