Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Publication available in full text mode
Content available

GENETIC RESEARCH IN MODERN SPORT

100%
EN
Sport genomics is a comparatively new scientific discipline concentrating on the organization and functioning of the genome of elite athletes. It seems to be the most promising tool for sport selection, individualization of the training process, sport traumatology, and also in illegal ‘gene doping’. With genotyping more available, research of gene variants’ influence on several phenotype traits related to physical performance have been widely carried out worldwide. This review not only summarizes the current findings of sport genomics study of molecular markers, their association with athlete status and training responses, but it also explores future trends and possibilities. The importance of genetics in modern sport increases every year. However, the recent studies still represent only the first steps towards a better understanding of the genetic factors that influence human physical abilities, and therefore continuing studies are necessary.
EN
Angiotensin converting enzyme gene (ACE) is the most frequently investigated genetic marker in the context of genetic conditioning of athletic predispositions. The product of the gene is a key component of the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), mainly responsible for the regulation of blood pressure. The main aim of the study was to determine the possible interaction between the ACE I/D polymorphism and endurance athlete status in a group of Polish rowers in comparison with sedentary individuals. 121 male Polish rowers, members of academic sports clubs, and 115 unrelated volunteers, were recruited for the study. The PCR amplification of the insertion (I) or deletion (D) fragment of the ACE gene was performed. Compared with control group, the frequency of the I allele differ significantly from that found in rowers (57.4% vs. 44.3%; P=0.013) and the ACE genotype frequency amongst the whole cohort of rowers (30.6% II, 53.7% ID, 15.7% DD) was also different from expected values (control group 19.1% II, 50.4% ID, 30.4% DD; P=0.017). Our investigation confirms a positive association of the I allele of the ACE gene with endurance athlete status in a group of Polish rowers.
EN
We hypothesized that the ACE ID / ACTN3 R577X genotype combination was associated with sprint and endurance performance. Therefore, the purpose of the present study was to determine the interaction between both ACE ID and ACTN3 R577X polymorphisms and sprint and endurance performance in swimmers. Genomic DNA was extracted from oral epithelial cells using GenElute Mammalian Genomic DNA Miniprep Kit (Sigma, Germany). All samples were genotyped using a real-time poly- merase chain reaction. The ACE I/D and the ACTN3 R577X genotype frequencies met Hardy-Weinberg expectations in both swimmers and controls. When the two swimmer groups, long distance swimmers (LDS) and short distance swimmers (SDS), were compared with control subjects in a single test, a significant association was found only for the ACE polymorphism, but not for ACTN3. Additionally, four ACE/ACTN3 combined genotypes (ID/RX, ID/XX, II/RX and II/XX) were statistically significant for the LDS versus Control comparison, but none for the SDS versus Control comparison. The ACE I/D and the ACTN3 R577X polymorphisms did not show any association with sprint swimming, taken individually or in combination. In spite of numerous previous reports of associations with athletic status or sprint performance in other sports, the ACTN3 R577X polymorphism, in contrast to ACE I/D, was not significantly associated with elite swimming status when considered individually. However, the combined analysis of the two loci suggests that the co-occurrence of the ACE I and ACTN3 X alleles may be beneficial to swimmers who compete in long distance races
EN
Alpha-actinins are an ancient family of actin-binding proteins that play structural and regulatory roles in cytoskeletal organization. In skeletal muscle, α-actinin-3 protein is an important structural component of the Z disc, where it anchors actin thin filaments, helping to maintain the myofibrillar array. A common nonsense polymorphism in codon 577 of the ACTN3 gene (R577X) results in α-actinin-3 deficiency in XX homozygotes. Based on knowledge about the role of ACTN3 R557X polymorphism in skeletal muscle function, we postulated that the genetic polymorphism of ACTN3 could also improve sprint and power ability.We compared genotypic and allelic frequencies of the ACTN3 R557X polymorphism in two groups of men of the same Caucasian descent: 158 power-orientated athletes and 254 volunteers not involved in competitive sport.The genotype distribution in the group of power-oriented athletes showed significant differences (P=0.008) compared to controls. However, among the investigated subgroups of athletes, only the difference of ACTN3 R577X genotype between sprinters and controls reached statistical significance (P=0.041). The frequencies of the ACTN3 577X allele (30.69% vs. 40.35%; P=0.005) were significantly different in all athletes compared to controls. Our results support the hypothesis that the ACTN3 577XX allele may have some beneficial effect on sprintpower performance, because the ACTN3 XX genotype is significantly reduced in Polish power-oriented athletes compared to controls.This finding seems to be in agreement with previously reported case-control studies. However, ACTN3 polymorphism as a genetic marker for sport talent identification should be interpreted with great caution.
EN
The purpose of this study was to examine the association of the BstUI RFLP C/T (rs 12722) and DpnII RFLP C/T (rs 13946) COL5A1 polymorphisms, individually and as haplotypes, with anterior cruciate ligament ruptures in recreational skiers. Subjects were 138 male recreational skiers with surgically diagnosed primary anterior cruciate ligament ruptures. The control group consisted of 183 apparently healthy male recreational skiers, who were without any self-reported history of ligament or tendon injury. DNA was extracted from buccal cells donated by the subjects and genotyping was carried out using real-time PCR. The genotype distributions for both polymorphisms met Hardy- Weinberg expectations in both groups. There were no significant differences in genotype distribution of allele frequencies of COL5A1 BstUI RFLP C/T and COL5A1 DpnII RFLP C/T polymorphisms between the ACL rupture and control groups. The T-T (BstUI RFLP T, DpnII RFLP T) haplotype was the most common (55.6%). The haplotype T-C was not present in any of the subjects. There was an underrepresentation tendency of the C-T haplotype in the study group compared to controls under recessive mode of inheritance. Higher frequency of the COL5A1 BstUI RFLP C/T and COL5A1DpnII RFLP C/T polymorphisms haplotype is associated with reduced risk of anterior cruciate ligament injury in a group of apparently healthy male recreational skiers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.