Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
A sulfur-related-pair defect in silicon has been studied with optically detected magnetic resonance spectroscopy. Measurement of the angular dependence of the optically detected magnetic resonance signals supplemented by the analysis of the spectrum "quality" yield to the conclusion that the point group symmetry of the defect studied is C_{1h}.
|
|
vol. 125
|
issue 2
174-176
EN
In this work, a series of boron-doped microcrystalline silicon samples [μc-Si:H(B)] were deposited by plasma-enhanced chemical vapor deposition, using silane (SiH_4) diluted in hydrogen, and diborane (B_2H_6) as a dopant gas. The concentration of B_2H_6 in SiH_4 was varied in the range of 0-100 ppm. The density of states was obtained from the thermally stimulated conductivity technique and compared with results obtained by the modulated photoconductivity methods. To explain the poor agreement between the density of states obtained from the thermally stimulated conductivity and the other methods, it is shown by means of numerical simulations that the density of states is very sensitive to experimental errors introduced in the calculation of the μ_{n}τ_{n} product (mobility of electron × lifetime of the electron). The thermally stimulated conductivity method is applied here for the first time to calculate the density of defect states in the forbidden band of μc-Si:H samples.
EN
Nanosecond pulsed technique was used to study and discriminate strong electric field induced effects in carrier transport in silicon doped GaAs/Al_{0.3}Ga_{0.7}As superlattices at room temperature. The experiment shows that the superlattice can serve as gain media to employ parametric phenomena for microwave amplification.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.