Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Advanced silica/lignosulfonate composites were obtained using magnesium lignosulfonate and silica precipitated in a polar medium. For comparative purposes analogous synthesis was performed using commercial silica Aerosil®200. Lignosulfonates are waste products of paper industry and their application in new multifunctional materials is of great economic interest. The composites obtained were subjected to thorough characterization by determination of their physicochemical, dispersive-morphological and electrokinetic properties. Their particle size distribution was measured, SEM images were taken, FT-IR analysis and colorimetric study were made, thermal and electrokinetic stabilities and parameters of porous structure were also determined. The results can be of interest in further application studies
EN
This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO2-SiO2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF/HFP) copolymeric membranes. The powders, dry membranes and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells.
EN
Synthesis of magnesium hydroxide was performed by the precipitation method with the use of magnesium sulfate and sodium hydroxide. The infiuence of temperature and ratio of reagents was studied. Magnesium hydroxides, and the magnesium oxides obtained from them by thermal decomposition, were analyzed to determine their bulk density, polydispersity and particle size. The magnesium oxide with the largest surface area was tested as a catalyst in the oxyethylation of lauryl alcohol, and shown to be selective but poorly reactive in comparison with commercially available catalysts. Further studies are needed to improve its reactivity.
EN
Studies were conducted on the modification of titanium white surface using selected silane coupling agents. The effect of the concentration of the organic coupling agents was examined (0.5; 1 or 3 weight parts per 100 weight parts of TYTANPOL R-003, TYTANPOL R-211 or TYTANPOL R-213 preparation of titanium white). The dispersive properties were determined by an estimation of the particle size distribution curves and of the polydispersity index. Moreover, microscopic observations were conducted permitting to evaluate the surface morphology of the modified TiO2 particles. The profiles of sedimentation in water were also determined for the titanium whites and the BET specific surface areas were determined. Selected samples of the modified and unmodified titanium whites were subjected to elemental analysis.
EN
The physicochemical and dispersive characterizations were conducted on the selected commercial titanium dioxides produced by, Z. Ch. POLICE, S. A. The dispersive properties were defined in detail by an analysis of particle size distribution and polydispersity index. Moreover, the microscope studies were executed to evaluate the surface morphology of the studied TiO2 forms. The profiles of titanium dioxides sedimentation in water were determined and the specific surface areas were defined by the BET method.
EN
The immobilization of Amano Lipase A from Aspergillus niger by adsorption onto Stöber silica matrix obtained by sol-gel method was studied. The effectiveness of the enzyme immobilization and thus the usefulness of the method was demonstrated by a number of physicochemical analysis techniques including Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TG), porous structure of the support and the products after immobilization from the enzyme solution with various concentration at different times. The analysis of the process’ kinetics allowed the determination of the sorption parameters of the support and optimization of the process. The optimum initial concentration of the enzyme solution was found to be 5 mg mL-1, while the optimum time of the immobilization was 120 minutes. These values of the variable parameters of the process were obtained by as ensuring the immobilization of the largest possible amount of the biocatalyst at
EN
The research reported here concerns the synthesis, characterization and potential applications of silica/lignosulfonate hybrid materials. Three types of silica were used (Aerosil®200, Syloid®244 and hydrated silica), along with magnesium lignosulfonate. The effectiveness of the hybrid material synthesis methodology was confirmed indirectly, using Fourier transform infrared spectroscopy, elemental and colorimetric analysis. Dispersive-morphological analysis indicates that the products with the best properties were obtained using 10 parts by weight of magnesium lignosulfonate per 100 parts of Syloid®244 silica. The relatively high thermal stability recorded for the majority of the synthesized products indicates the potential use of this kind of a material as a polymer filler. Results indicating the high electrokinetic stability of the materials are also of great importance. Additionally, the very good porous structure properties indicate the potential use of silica/lignosulfonate systems as biosorbents of hazardous metal ions and harmful organic compounds.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.