Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We employ an effective-field theory with correlations in order to study a magnetocaloric effect on a triangular Ising antiferromagnet, which is selectively diluted by non-magnetic impurities on one of the three sublattices. Such a dilution generally relieves massive degeneracy in our system and therefore the ground-state entropy diminishes and the magnetocaloric effect weakens at low temperatures. However, at relatively higher temperatures we can observe significantly enhanced negative isothermal entropy changes for the sublattice concentration p_A=0.8.
|
|
vol. 126
|
issue 1
16-17
EN
Within the framework of the effective-field theory with correlations we investigate effects of an external magnetic field and random site dilution on basic thermodynamic quantities, such as the magnetization and the magnetic susceptibility, on the geometrically frustrated triangular lattice Ising antiferromagnet. Behavior of these quantities is presented in the temperature-field parameter space for selected mild degrees of dilution. It is found that, besides the anomalies associated with phase transitions from the ferrimagnetic to the paramagnetic state, in certain regions of the parameter space these functions display some more anomalies and peculiarities, as a result of joint effects of the geometrical frustration, magnetic dilution, thermal fluctuations and the applied magnetic field.
|
|
issue 5
740-741
EN
We study effects of an external magnetic field and random site dilution on the magnetic ordering in the geometrically frustrated triangular lattice Ising antiferromagnet by the use of an effective-field theory with correlations. In particular, we find that already a small amount of the quenched dilution locally relieves the frustration which in the presence of the external field is manifested by multiple splitting of a broad frustration-induced 1/3 magnetization plateau. Depending on the field strength, the dilution can either decrease or increase the magnetization or even change its effect from decreasing to increasing.
EN
We study effects of the next-next-nearest-neighbour antiferromagnetic (J₃ < 0) interaction on critical properties (or phase diagram) of the frustrated spin-½ J₁-J₂-J₃ Ising antiferromagnet on the honeycomb lattice by using the effective-field theory with correlations. Beside the ground-state energy, we find that there is a region of J₃ < 0 in which the frustrated honeycomb lattice antiferromagnet exhibits a tricritical point, at which the phase transition changes from the second order to the first one on the line between Néel antiferromagnetic and paramagnetic phases.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.