Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
Kosmos
|
2000
|
vol. 49
|
issue 3
489-501
EN
The use of nucleotides and their analogs in the pharmacological studies of nucleotide receptors (P2 class) should be preceded by detailed studies on their degradation connected with ecto-enzymes of a given cell type. In the present studies we have analyzed stability of some phosphorothioate and phosphonate analogs of ATP and ADP in the HeLa epitheloid carcinoma and endothelial HUVEC cells cultures. Our studies have revealed that ecto-nucleotide pyrophosphatase (E-NPP) is one of the main enzymes involved in the extracellular degradation of ATP and other nucleotides in the HeLa cells. On the other hand, the ecto-ATPDase is responsible for the hydrolysis of extracellular nucleotides in human endothelial cell cultures, while the E-NPP-like enzymes of the HUVEC cells are not essential to this degradation. The concerted action of the aforementioned ecto-enzymes and nucleotide pyrophosphatase, 5'-nucleotidase and adenosine deaminase present in fetal bovine serum (FBS) supplied to the culture medium, results in partial or complete degradation of the phosphorothioate (ATPγS) and phosphonate analogs of adenosine nucleotides (α,β-methylene-ATP and β,γ-methylene-ATP) in the cell cultures. Only ADPβS appears to be resistant to these enzymes. The influence of some nucleotides and their analogs on the proliferation of the HeLa cells in presence or absence of FBS is also discussed.
EN
Natural polyphenols and polyphenol-rich extracts have been found to possess preventive and therapeutic potential against several types of cancers, including colorectal cancer (CRC), which is an example of an inflammation-associated cancer. This study examines the chemopreventive effect of a Japanese quince (Chaenomeles japonica) fruit flavanol preparation (JQFFP) on colon cancer SW-480 cells. JQFFP, rich in procyanidin monomers and oligomers, was found to inhibit the SW-480 cell viability by 40% at 150 µM catechin equivalents (CE) after 72 h incubation when compared to control, but it was non-toxic to normal colon fibroblast CCD-18Co cells. Furthermore, 100 µM CE JQFFP suppressed COX-2 mRNA expression to 36.7% of control values and protein expression to 77%. In addition, JQFFP reduced the MMP-9 protein expression (to 24% vs. control at 100 µM CE) and caused inhibition of its enzymatic activity (to 35% vs. control at 100 µM CE). Not only did JQFFP inhibit the COX-2 and MMP-9 levels, but it also reduced the NF-κB protein expression (to 65% of control) and phosphorylation of its p65 subunit (to 51%) at 100 µM CE. These results provide the first evidence that JQFFP inhibits COX-2, MMP-9, and NF-κB expression, suggesting that it has cytotoxic, anti-inflammatory, and anti-metastatic activities towards the colon cancer SW-480 cells.
EN
Acetobacter xylinum strains are known as very efficient producers of bacterial cellulose which, due to its unique properties, has great application potential. One of the most important problems faced during cellulose synthesis by these bacteria is generation of cellulose non-producing cells, which can appear under submerged culture conditions. The reasons of this remain unknow. These studies have been undertaken to compare at the molecular level wild-type, cellulose producing (Cel+) A. xylinum strains with Cel- forms of cellulose-negative phenotype. Comparison of protein profiles of both forms of A. xylinum by 2D electrophoresis allowed for the isolation of proteins which were produced exclusively by either Cel+ or Cel- cells. Sequences of peptides derived from these proteins were aligned with those of proteins deposited in databases. This analysis revealed that Cel- cells lacked two enzymes: phosphoglucomutase and glucose-1-phosphate uridylyltransferase, which generates UDP-glucose being the substrate for cellulose synthase. DNA was analyzed by ligation-mediated PCR carried out at low denaturation temperature (PCR-MP). Two DNA fragments of different thermal stability (218 and 217 bp) were obtained from the DNA of Cel+ and Cel- forms, respectively. The only difference between these Cel- and Cel+ DNA fragments is deletion of one T residue. Alignment of those two sequences with those deposited in the GenBank database revealed that similar fragments are present in the genomes of some bacterial cellulose producers and are located downstream from open reading frames (ORF) encoding phosphoglucomutase. The meaning of this observation is discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.