Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Specific heat, magnetization and DC susceptibility of the single crystal CsNd(MoO_{4})_{2},a layered rare-earth dimolybdate, have been investigated nominally, in the temperature range from 100 mK to 300 K in the magnetic field up to 5 T, applied along the a axis. The analysis of the experimental data revealed the absence of a phase transition to the magnetic ordered state down to 100 mK. The application of a standard two-level model yielded an excellent agreement with the specific heat data above 2 K in nonzero magnetic field indicating a weakness of magnetic correlations and a predominant occupation of the ground-energy doublet. The latter indicates a large energy separation between the ground and first excited doublet. These measurements suggest that CsNd(MoO_{4})_{2} can represent a good realization of a single-ion magnet.
2
Content available remote

Thermal Conductivity of a Layered CsGd(MoO_4)_2 Crystal

100%
EN
The thermal conductivity of CsGd(MoO_4)_2 has been studied in the temperature range from 2 to 50 K in zero magnetic field. The analysis of the data performed within the Debye model with the relaxation-time approximation revealed the presence of the scattering of phonons by critical fluctuations. The behaviour of phonon mean free path at the lowest temperatures is discussed.
3
Content available remote

Scattering of Phonons in CsMnCl_3·2H_2O

84%
EN
The thermal conductivity of the quasi-one-dimensional S = 5/2 Heisenberg antiferromagnet CsMnCl_3·2H_2O with the intrachain interaction J/k_{B} = 3 K was experimentally studied at temperatures from 2 to 25 K. The data analysis performed within the Debye model with the relaxation-time approximation unambiguously indicates the presence of the scattering of phonons on magnetic subsystem.
EN
Structural analysis of [Ni(en)(H_2O)_4][SO_4]·2H_2O was performed and it suggests that the crystal field should play a dominant role in the magnetic properties of the system. This conjecture coincides well with the specific heat and susceptibility behaviour. The analysis confirmed that the compound can be treated as a spin 1 single molecule magnet with nonmagnetic ground state introduced by easy-plane single-ion anisotropy D/k_B≈11 K and neglecting in-plane anisotropy E/D <0.1.
EN
The heat transport in a single-crystal of CsNiF_3 has been performed in the temperature range from 2 K to 7 K in a zero magnetic field, B = 0, as well as in sufficiently large magnetic fields, B = 6 T and 9 T, inducing the ferromagnetic ground state along the hard c-axis. CsNiF_3 represents an S = 1 quasi-one-dimensional XY ferromagnet with the intra-chain exchange coupling J/k_{B} ≈ 24 K, single-ion anisotropy D/k_{B} ≈ 8 K, and ordering temperature T_{N} = 2.7 K. Comparison of the phonon and magnon velocities suggests that phonons are the main heat carriers in this magnetic insulator. The thermal conductivity in B = 0 was analysed in the frame of a standard Debye model. The temperature dependence of the effective phonon mean free path was calculated from the experimental data, and the enhancement of the phonon mean free path in B ≠ 0 was obtained, indicating that magnons act as scattering centers for phonons.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.