Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2010
|
vol. 8
|
issue 3
587-593
EN
The equilibrium geometries and electronic structures of a series of SWCNTs doped with a silicon atom were studied by using density function theory (DFT). The most stable doping site of silicon predicted at B3LYP/6-31G(d,p) level was located near the boundary of the SWCNTs. The energy gaps of (3,3) C48, (3,3) C60 and (3,3) C72 were respectively decreased by 0.43, 0.25 and 0.14 eV after doping. Based on the B3LYP/6-31G(d) optimized geometries, the electronic spectra of the doped SWCNTs were computed using the INDO/CIS method. The first UV absorption at 973.9 nm of (5,5)-Si(L) (C59Si) compared with that at 937.5 nm of (5,5) (C60) was red-shifted. The 13C NMR spectra and nuclear independent chemical shifts (NICS) of the doped SWCNTs were investigated at B3LYP/6-31G(d) level. The chemical shift at 119.4 of the carbon atom bonded with the silicon atom in (3,3)-Si(L) (C59Si) in comparison with that at 144.1 of the same carbon atom in (3,3) (C60) moved upfield. The tendency of the aromaticity (NICS = −0.1) for (3,3)-Si(H) (C47Si) with respect to that of the anti-aromaticity (NICS = 6.0) for (3,3) (C48) was predicted. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.