Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Transport in GaAs/AlAs/GaAs [111] Tunnel Junctions

100%
EN
Resonant tunneling in single-barrier GaAs/AlAs/GaAs junctions grown in [111] direction was studied for samples with different concentration of silicon δ-doping in AlAs. In the I(V) characteristics, measured at 4 K, two kinds of peaks were observed: related to resonant tunneling via donors states in the barrier, and through X-minimum quantum well subbands. The results are compared to those previously obtained for analogous samples grown along [001] direction. The investigations reveal different symmetry of donor states in both cases.
2
Content available remote

Transport Properties of Disordered Graphene Layers

100%
EN
Samples consisting of a few layers of graphene obtained by thermal decomposition of SiC were studied by means of transport experiments at 4 K and in a magnetic field up to 7 T. Transport data show that the samples have a two-dimensional character. Magnetoresistance has an approximately linear character at high magnetic fields, which has been previously observed in graphite samples, and a negative magnetoresistance, at low magnetic fields. The transverse resistivity ρ_{xy} is nonlinear as a function of B, which can be described using a many-carrier model.
EN
Arrays of crystalline ZnTe nanowires grown by vapor-liquid-solid mechanism were covered with cobalt in a molecular beam epitaxy system. Magnetic and structural characterization of such core/shell nanowires was performed. Using scanning electron microscopy and transmission electron microscopy it was found that the mean shell thickness of cobalt was about 35% of the nominal deposition thickness. Deposited cobalt had a polycrystalline structure covering the ZnTe nanowires evenly along their length. With the increment of temperature during Co deposition the roughness of the nanowire sidewalls increases. Vibrating sample magnetometry measurements revealed that the magnetization easy-axis direction is perpendicular to the long axis of the nanowires, which is in agreement with theoretical predictions. Oxidation of Co shell does not change the anisotropy direction of such structures, however it increases their coercivity. Exchange bias effect at the interface of cobalt and cobalt oxides suggested by some authors is not responsible for such anisotropy orientation.
EN
Series of Al₂O₃(0001)/Pt/(Fe/Pt)ₙ/Pt multilayers with variable number of bilayers n and thicknesses of individual layers were grown using molecular beam epitaxy to investigate influence of buffer layer structure, number of bilayers, and individual layer thickness on their structural and magnetic properties. Both columnar and monocrystalline 10 nm Pt (111) buffer layers were used in the experiment. Structure of Pt buffer layer determined the roughness of Fe/Pt interfaces and consequently magnetic properties of the multilayers. When multilayers were deposited on columnar Pt buffer layer, we observed increase of Fe/Pt interfaces roughness with increasing number of bilayers to values exceeding the nominal Fe/Pt bilayer thickness in the upper part of the sample volume, which resulted in the increment of coercivity in the sample with n=15 determined from hysteresis loops measured for perpendicular orientation of magnetic field. When Fe/Pt multilayers were deposited on monocrystalline Pt buffer layer, Fe/Pt interfaces were smooth regardless the number of bilayers. All samples, despite of the quality of buffer layer, number of bilayers, and individual layer thickness revealed easy magnetisation axis oriented in the sample plane.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.