Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
Thermal regeneration of bentonite sorbent with application of the reburning, as a method of reduction of NOx emission, has been presented. It has been proved that in the freebooard above fluidised bed, it can be achieved significant decrease of NOx concentration in the flue gases, related to contractual conditions. In the freeboard of the reactor besides reburning it has been conduced separation of the raw material from regenerated material and pneumatic transport of solid material achieved from regeneration. It has been revealed that transport processes have no negative influence on NOx reduction conditions. Heat evolved above the fluidised bed is partly transferred to the fluidised bed and that facilitates obtaining the thermal equilibrium in the bed.
EN
The paper presents the results of the disposal of packaging waste from two companies: Tetra Pak and Combibloc, carried out in a fluidized bed boiler of rated thermal power 0.5 MW. The material introduced into the fluidized bed boiler underwent thermal and mechanical degradation in a sand bed of the temperature between 750 and 850°C. The process proceeds auto-thermally, without the need of additional fuel. The appropriately chosen fluidization parameters caused the separation of the solid products of combustion from the deposit material. Presence of aluminum, part of it in an un-oxidized form, was confirmed in separated dust. The gaseous products of combustion contained the traces of oxides of nitrogen and sulfur, mainly originating from the remnants of food products contained in the packaging. However, the concentration of these oxides met the requirements of emission standards.
3
Content available remote

Carbon Shale Combustion in the Fluidized Bed Reactor

88%
EN
The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm) and VOC (30 mg/m3) have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.
EN
This study presents the use of fluidised bed combustion to produce thermal energy, aluminium recovery and the reduction of the Tetra Pak and Combibloc packaging waste stream. Fluidisation and the pneumatic transport, which take place in the same apparatus, allow recovering bits of the aluminium foil from the combustion zone. The limited time spent in the high temperature zone leads to a high content of free metal in the solids separated in the ash trap and cyclone. Other solid products are practically chemically inert and may be disposed in a landfill of municipal or inert wastes.
EN
The paper discusses the possibility of using the reversible reaction CaCO3 ↔ CaO + CO2 for the cyclic capture and release of CO2 directly inside a fluidised bed combustor. This could lead to the lowering of CO2 emissions into the atmosphere, as part of an effort to mitigate the greenhouse effect associated with the rising atmospheric CO2 concentrations resulting from obtaining energy from burning fossil fuels.An enrichment coefficient E has been introduced and defined as a measure of the production of CO2 (on calcining CaCO3) or its removal (on carbonation of CaO) with respect to the level associated with fuel combustion alone. The observations made on the effect of introducing an additional external stream of CO2 on the efficiency of the chemical capture process have been described. Through an appropriate control of the temperature inside the reactor it is possible to change the value of E over the range [-0.8; 0.8]. This implies that up to about 80% of the CO2 derived from the fuel can be temporarily retained within the bed and released later, at a higher concentration. The proposed method of burning fuel in a chemically active fluidised bed could be an available method leading to CO2 isolation from the flue gases and leading to its eventual sequestration.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.