Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Electronic Structure of TmPdIn

100%
EN
Electronic structure of a ternary TmPdIn compound, which crystallizes in the hexagonal ZrNiAl-type structure, was studied by X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. Density of states in the valence band was calculated by means of the augmented plane wave/local orbital method based on density functional theory. The results showed that the valence band is formed mainly of Tm 4f and Pd 4d states. In the ultraviolet photoemission spectra one can distinguish Pd 4d maximum and Tm 4f multiplet peaks, which are displaced with respect to those of pure Tm.
EN
This work presents studies of the valence band of two Kondo lattice systems: Ce_2Co_{0.8}Si_{3.2}, which is paramagnetic with the Kondo temperature T_{K} ≈50 K and Ce_2RhSi_3, which is antiferromagnetic below T_{N}=4.5 K and exhibits T_{K} ≈9 K. The photoemission spectra, which are obtained with photon energy tuned to Ce 4d-4f resonance, reveal a Kondo peak at the Fermi energy (E_{F}), its spin-orbit splitting partner at 0.24 eV and a broad maximum related to Ce f^0 final state. The spectra indicate that Kondo peak has a higher intensity for Ce_2Co_{0.8}Si_{3.2}. The off-resonance photoemission data reveal that a maximum in the 3d electron density of states is shifted towards E_{F} for Ce_2Co_{0.8}Si_{3.2} as compared to Ce_2RhSi_3. Full-potential local-orbital calculations were realized with local spin density approach +U approach for 213 stoichiometry. They show that a higher density of states near E_{F} is observed for Ce_2CoSi_3. The calculations also reveal the existing tendencies for antiferromagnetic and ferromagnetic ground states in a case of Ce_2RhSi_3 and Ce_2CoSi_3, respectively.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.