Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Recently, we have shown that PFKFB4 gene which encodes the testis isoenzyme of PFKFB is also expressed in the prostate and hepatoma cancer cell lines. Here we have studied expression and hypoxic regulation of the testis isoenzyme of PFKFB4 in several malignant cell lines from a female organ - the mammary gland. Our studies clearly demonstrated that PFKFB4 mRNA is also expressed in mammary gland malignant cells (MCF-7 and T47D cell lines) in normoxic conditions and that hypoxia strongly induces it expression. To better understand the mechanism of hypoxic regulation of PFKFB4 gene expression, we used dimethyloxalylglycine, a specific inhibitor of HIF-1α hydroxylase enzymes, which strongly increases HIF-1α levels and mimics the effect of hypoxia. It was observed that PFKFB4 expression in the MCF7 and T47D cell lines was highly responsive to dimethyloxalylglycine, suggesting that the hypoxia responsiveness of PFKFB4 gene in these cell lines is regulated by HIF-1 proteins. Moreover, desferrioxamine and cobalt chloride, which mimic the effect of hypoxia by chelating or substituting for iron, had a similar stimulatory effect on the expression of PFKFB mRNA. In other mammary gland malignant cell lines (BT549, MDA-MB-468, and SKBR-3) hypoxia and hypoxia mimics also induced PFKFB4 mRNA, but to variable degrees. The hypoxic induction of PFKFB4 mRNA was equivalent to the expression of PFKFB3, Glut1, and VEGF, which are known HIF-1-dependent genes. Hypoxia and dimethyloxalylglycine increased the PFKFB4 protein levels in all cell lines studied except MDA-MB-468. Through site-specific mutagenesis in the 5'-flanking region of PFKFB4 gene the hypoxia response could be limited. Thus, this study provides evidence that PFKFB4 gene is also expressed in mammary gland cancer cells and strongly responds to hypoxia via an HIF-1α dependent mechanism. Moreover, the PFKFB4 and PFKFB3 gene expression in mammary gland cancer cells has also a significant role in the Warburg effect which is found in all malignant cells.
EN
Fibrin split product D-dimer (DD) is most probably involved in the development of vascular disorders. At 1.5 μM concentration DD inhibited the incorporation of D-[1-3H]glucosamine hydrochloride and [2-14C]acetate · Na into pericellular heparan sulphate (HS) of rabbit coronary endothelial cells without affecting other groups of glycosaminoglycans (GAGs). At the same time, DD reduced HS ability to bind antithrombin (AT) and suppressed NO production. The effect of DD on pericellular GAGs was similar to that of Nw-methyl-L-arginine, the competitive inhibitor of endothelial NO synthase (eNOS). L-Ascorbic acid, eNOS activator, increased the level of endogenous NO in the DD-treated cells, and restored HS accumulation and antithrombin binding. It is suggested that DD influence on endothelial HS may be mediated by NO production. Another effect of DD, namely, stimulation of plasminogen activator inhibitor-1 (PAI-1) secretion did not depend on the NO level. The decreased HS content, reduced anticoagulant properties of HS, and increased PAI-1 secretion disorganized the endothelial matrix, and promoted fibrin formation and vascular damage. This points to DD as an important factor in the development of vascular disorders.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.