Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper, a study of the influence of hydrogen (concentrations 6 ppm − 1%) on the work function of thin metallic films at moderately elevated temperatures is presented. The work function was measured indirectly by the observation of the surface potential of dedicated test structures using scanning surface potential microscope. Metallic layers with thicknesses of 10, 20, 30, and 50 nm were deposited on semiconductor substrates as well as on a thick gold layer. The investigations were focused on palladium thin films although a comparison to results obtained for platinum layers was also discussed.
EN
In the paper results of investigation of the influence of low concentration hydrogen on stress changes in thin catalytic metal films were discussed. The concentration of H2 was altered from 6 ppm to 1% of hydrogen (6N) in nitrogen (6N). Silicon beams covered with palladium or platinum films of various thicknesses were anchored at one end and their deflection at the other end was measured by atomic force microscope. Stress changes were determined by application of modified Stoney formula and compared with results of computer modelling. The influence of stress caused by hydrogen absorption on the alteration of output characteristics of AIII-N based hydrogen sensors was excluded. The time dependence of stress in metallic films for various hydrogen concentrations indicated dissociation limited mechanism of hydrogen absorption.
3
Content available remote

Creation of high resolution pattern by nanoscratching

64%
EN
The lithography is a basic microelectronic process which determines properties of fabricated device. The resolution of optical lithography applied nowadays is insufficient for creating high resolution patterns such as gate electrode in transistors. The scaling ability is the major motivation for undertaking experiments to elaborate high resolution lithography techniques. The atomic force microscope (AFM) is commonly used as tool for creation patterns in sub-micrometers resolution. In this paper, the results of simulations of electromagnetic field behavior during passing the gap with a size smaller than the wavelength of the optical lithography light source are presented. Also results of the nanoscratching lithography prepared for various parameters of force that are applied to the tip are summarized.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.