Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Electromagnetically induced transparency is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider electromagnetically induced transparency in an atomic Bose-Einstein condensate trapped in a double well potential. One well is prepared as in standard electromagnetically induced transparency with a weak probe laser and control laser in a Λp configuration while tunneling between the wells provides a coherent coupling between identical electronic states in the two wells leading to the formation of spatially delocalized inter-well dressed states. The macroscopic inter-well coherence of the Bose-Einstein condensate wave function qualitatively modifies the normal electromagnetically induced transparency linear susceptibility and leads to the formation of additional absorption resonances and larger dispersion than electromagnetically induced transparency. We show that these new resonances can be interpreted in terms of the inter-well dressed states and the formation of a novel type of dark state involving the control laser and the inter-well tunneling.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.