Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2003
|
vol. 50
|
issue 1
211-215
EN
Labile iron pool (LIP) constitutes a crossroad of metabolic pathways of iron-containing compounds and is midway between the cellular need for iron, its uptake and storage. In this study we investigated oxidative DNA damage in relation to the labile iron pool in a pair of mouse lymphoma L5178Y (LY) sublines (LY-R and LY-S) differing in sensitivity to hydrogen peroxide. The LY-R cells, which are hydrogen peroxide-sensitive, contain 3 times more labile iron than the hydrogen peroxide-resistant LY-S cells. Using the comet assay, we compared total DNA breakage in the studied cell lines treated with hydrogen peroxide (25 μM for 30 min at 4°C). More DNA damage was found in LY-R cells than in LY-S cells. We also compared the levels of DNA lesions sensitive to specific DNA repair enzymes in both cell lines treated with H2O2. The levels of endonuclease III-sensitive sites and Fapy-DNA glycosylase-sensitive sites were found to be higher in LY-R cells than in LY-S cells. Our data suggest that the sensitivity of LY-R cells to H2O2 is partially caused by the higher yield of oxidative DNA damage, as compared to that in LY-S cells. The critical factor appears to be the availability of transition metal ions that take part in the OH radical-generating Fenton reaction (very likely in the form of LIP).
EN
We examined the response to hydrogen peroxide of two L5178Y (LY) sublines which are inversely cross-sensitive to hydrogen peroxide and X-rays: LY-R cells are radioresistant and hydrogen peroxide-sensitive, whereas LY-S cells are radiosensitive and hydrogen peroxide-resistant. Higher initial DNA breaks and higher iron content (potentially active in the Fenton reaction) were found in the hydrogen peroxide sensitive LY-R cells than in the hydrogen peroxide resistant LY-S cells, whereas the antioxidant defence of LY-R cells was weaker. In particular, catalase activity is twofold higher in LY-S than in LY-R cells. The content of monobromobimane-reactive thiols is 54% higher in LY-S than in LY-R cells. In contrast, the activity of glutathione peroxidase (GPx) is about two times higher in LY-R than in LY-S cells; however, upon induction with selenium the activity increases 15.6-fold in LY-R cells and 50.3-fold in LY-S cells. Altogether, the sensitivity difference is related to the iron content, the amount of the initial DNA damage, as well as to the efficiency of the antioxidant defence system. Differential nuclear translocation of p65-NF-κB in LY sublines is due to the more efficient antioxidant defence in LY-S than in LY-R cells.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.