Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
In the present work, we report the results of a spin trapping ESR study of four essential oils widely used for skin care products such as creams and bath salts. The studied essential oils are Rosmarini aetheroleum (rosemary), Menthae piperitae aetheroleum (mint), Lavandulae aetheroleum (lavender), and Thymi aetheroleum (thyme). Fenton reaction in the presence of ethanol was used to generate free radicals. The N-tert-butyl-α-phenylnitrone (PBN) was used as a spin trap. In the Fenton reaction, the rosemary oil had the lowest effect on radical adduct formation as compared to the reference Fenton system. Since essential oils are known to be lipid soluble, we also conducted studies of essential oils in Fenton reaction in the presence of lipids. Two model lipids were used, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The obtained results suggested that in the presence of DOPC lipids, the •OH and PBN/•CHCH3(OH) radicals are formed in both phases, that is, water and lipids, and all the studied essential oils affected the Fenton reaction in a similar way. Whereas, in the DPPC system, the additional type of PBN/X (aN = 16.1 G, aH = 2.9 G) radical adduct was generated. DFT calculations of hyperfine splittings were performed at B3LYP/6-311+G(d,p)/EPR-II level of theory for the set of c-centered PBN adducts in order to identify PBN/X radical.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.