Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Introduction: Experimental autoimmune encephalomyelitis (EAE) is a prototypic Th1-mediated autoimmune inflammatory disease of the central nervous system (CNS), and serves as a model for the human demyelinating disease, multiple sclerosis. Cisplatin is a drug widely used in the treatment of a variety of human neoplasias, such as advanced bladder carcinoma, adrenal cortex carcinoma, breast cancer, head and neck or lung carcinoma. Cisplatin binds to DNA and interferes with cellular repair and other mechanism, which eventually result into cell death. It is known that cisplatin can induce immunosuppressive effects through inhibition of T cell activity. Therefore we analyzed the anti-inflammatory effects of cisplatin in a rat EAE model. Materials and Methods: EAE was induced in male LEW rats by immunizing with a synthetic peptide of guinea pig myelin basic protein. The development of EAE and neurological signs were evaluated by a standard protocol. Immunohistochemistry was applied to show immune cell infiltration into the CNS. Results: Early treatment of EAE rats with cisplatin effectively ameliorated the development of disease and provided a significant protective effect compared to control rats. Further, histological analysis demonstrated that the formation of the typical perivascular cuffs and brain infiltration of monocytes and lymphocytes were complete absent in cisplatin treated rats, while abundant T cell infiltration was seen in the CNS of EAE rats. Conclusions: Our data show that cisplatin has protective effects in EAE, indicating that cisplatin could be a candidate in the treatment of human CNS autoimmunity.
EN
In vivo phage display has been used extensively to screen for novel targets of tumor therapy. Phage display peptide libraries can express random peptides or protein fragments and the aim of phage display is to identify peptide molecules that bind stably to a given target. Angiogenesis is essential to tumor development. Both blood and lymphatic vessels of tumors are different from those of normal tissues. Phage display has been used to analyze the structure and molecular diversity of tumor vasculature and to select tumor-specific antigens which have revealed stage- and type-specific markers of tumor blood vessels. Furthermore, peptides identified by in vivo phage display also work as vehicles to transport cargo therapeutic reagents to tumors. These peptides and their corresponding cellular proteins and ligands may provide molecular tools to selectively target the addresses of tumors and their pathological blood vessels and might increase the efficacy of therapy while decreasing side effects.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.