Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Molecular evolution of enolase

100%
EN
Enolase (EC 4.2.1.11) is an enzyme of the glycolytic pathway catalyzing the dehydratation reaction of 2-phosphoglycerate. In vertebrates the enzyme exists in three isoforms: α, β and γ. The amino-acid and nucleotide sequences deposited in the GenBank and SwissProt databases were subjected to analysis using the following bioinformatic programs: ClustalX, GeneDoc, MEGA2 and S.I.F.T. (sort intolerant from tolerant). Phylogenetic trees of enolases created with the use of the MEGA2 program show evolutionary relationships and functional diversity of the three isoforms of enolase in vertebrates. On the basis of calculations and the phylogenetic trees it can be concluded that vertebrate enolase has evolved according to the "birth and death" model of evolution. An analysis of amino acid sequences of enolases: non-neuronal (NNE), neuron specific (NSE) and muscle specific (MSE) using the S.I.F.T. program indicated non-uniform number of possible substitutions. Tolerated substitutions occur most frequently in α-enolase, while the lowest number of substitutions has accumulated in γ-enolase, which may suggest that it is the most recently evolved isoenzyme of enolase in vertebrates.
EN
Biosurfactants are microbial surface active compounds which, contrary to synthetic surfactants, are natural in origin, biodegradable and less toxic to a human organism. For that reason, there is a great research potential in studies aimed at their purification, finding potential ways of their utilization and decreasing their production costs. This paper demonstrates the process of isolating and purifying a surfactin synthesized by Bacillus subtilis PCM 1949. Surfactin samples were prepared by a classical organic solvent extraction and were studied using mass spectrometry (MS). Analysis of the susceptibility profile of microorganisms utilized in the diffusion-plate tests demonstrated that their sensitivity to this surfactin is differentiated and depends on the microorganism species. In our studies, we found that the selected strains of bacteria and fungi were insensitive to this surfactin at a wide range of concentrations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.