Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2004
|
vol. 2
|
issue 4
627-637
EN
The effect of the main factors known to govern the kinetic regularities of enzyme adsorption, such as enzyme solution concentration, temperature, pH, specific surface of the adsorbent, etc., were studied. Two kinds of disperse carbonaceous materials-activated carbon NORIT and carbon black PM-100, were used as matrices for enzyme immobilization. For both immobilization matrices studied, the amount of the adsorbed enzyme was found to reach saturation at catalase (CAT) enzyme concentrations exceeding 20 mg·mL−1 (∼100 μM). The pH of the solution affected the adsorption capacities of the selected immobilization matrices; larger amounts of CAT adsorbed were estimated in neutral and alkaline solutions than under acidic conditions for enzyme immobilization. UV-spectrophotometry was employed as a basic analytical approach in this study.
Open Chemistry
|
2005
|
vol. 3
|
issue 2
279-287
EN
Catalytic activity of catalase (CAT) immobilized on a modified silicate matrix to mediate decomposition of meta-chloroperoxibenzoic acid (3-CPBA) in acetonitrile has been investigated by means of quantitative UV-spectrophotometry. Under the selected experimental conditions, the kinetic parameters: the apparent Michaelis constat (KM), the apparent maximum rate of enzymatic reaction (Vmaxapp), the first order specific rate constants (ksp), the energy of activation (Ea) and the pre-exponential factor of the Arrhenius equation (Z0) were calculated. Conclusions regarding the rate-limiting step of the overall catalytic process were drawn from the calculated values of the Gibbs energy of activation ΔG*, the enthalpy of activation ΔH*, and the entropy of activation ΔS*.
EN
A mesoporous graphite material micro-structured with palladium-platinum deposits (mixed in the ratio of 70:30% Pd:Pt) has been used as a cost-effective electrode material for designing an amperometric biosensor for xanthine. The here reported biosensor shows significantly improved operational parameters as compared to previously published results. At a constant applied potential of −0.05 V (vs. Ag/AgCl) it is distinguished with enhanced selectivity of the determination: at the working potential the current from the electrochemical transformation of various electrochemically active substances usually attending biological fluids (incl. uric acid, L-ascorbic acid, glutathione and paracetamol) has been eliminated. The effect of both the temperature and buffer composition on the analytical performance of the sensor has been investigated. Under optimal operational conditions (25°C, −0.05 V vs. Ag/AgCl, phosphate buffer, pH 8.4), the following have been defined for the biosensor: sensitivity 0.39 µA µM−1, strict linearity of the response up to xanthine concentration 70 µM, detection limit of 1.5 µM (S/N=3) and a response time of at most 60 s. [...]
EN
The immobilisation of AChE enzyme through chemisorption on Au-modified graphite was examined with view of its prospective application in the design of membraneless electrochemical biosensors for the assay of enzyme inhibitors. The developed immobilisation protocol has been based on a two-stage procedure, comprising i) electrodeposition of gold nanostructures on spectroscopic graphite; followed by ii) chemisorption of the enzyme onto gold nanoparticles. Both the coverage of the electrode surface with Au nanostructures and the conditions for enzyme immobilisation were optimised. The proposed electrode architecture together with the specific type of enzyme immobilisation allow for a long-term retaining of the enzyme catalytic activity. The extent of inhibition of the immobilised acetylcholinesterase enzyme by the organophosphorous compound monocrotophos has been found to depend linearly on its concentration over the range from 50 to 400 nmol mL−1 with sensitivity 77.2% inhibition per 1 µmol mL−1 of monocrotophos. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.