Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We aimed to elucidate the role of electronic and structural parameters of nitroaromatic compounds in their two-electron reduction by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2). The multiparameter regression analysis shows that the reactivity of nitroaromatic compounds (n = 38) increases with an increase in their single-electron reduction potential and the torsion angle between nitrogroup(s) and the aromatic ring. The binding efficiency of nitroaromatics in the active center of NQO1 exerted a less evident role in their reactivity. The reduction of nitroaromatics is characterized by more positive entropies of activation than the reduction of quinones. This points to a less efficient electronic coupling of nitroaromatics with the reduced isoalloxazine ring of FAD, and may explain their lower reactivity as compared to quinones. Another important but poorly understood factor enhancing the reactivity of nitroaromatics is their ability to bind at the dicumarol/quinone binding site in the active center of NQO1.
EN
In order to clarify the poorly understood mechanisms of two-electron reduction of quinones by flavoenzymes, we examined the quinone reductase reactions of a member of a structurally distinct old yellow enzyme family, Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase (PETNR). PETNR catalyzes two-electron reduction of quinones according to a 'ping-pong' scheme. A multiparameter analysis shows that the reactivity of quinones increases with an increase in their single-electron reduction potential and pKa of their semiquinones (a three-step (e-,H+,e-) hydride transfer scheme), or with an increase in their hydride-transfer potential (E7(H-)) (a single-step (H-) hydride transfer scheme), and decreases with a decrease in their van der Waals volume. However, the pH-dependence of PETNR reactivity is more consistent with a single-step hydride transfer. A comparison of X-ray data of PETNR, mammalian NAD(P)H : quinone oxidoreductase (NQO1), and Enterobacter cloacae nitroreductase, which reduce quinones in a two-electron way, and their reactivity revealed that PETNR is much less reactive, and much less sensitive to the quinone substrate steric effects than NQO1. This may be attributed to the lack of π-π stacking between quinone and the displaced aromatic amino acid in the active center, e.g., with Phe-178' in NQO1.
EN
We examined the kinetics of single-electron reduction of a large number of structurally diverse quinones and nitroaromatic compounds, including a number of antitumour and antiparasitic drugs, and nitroaromatic explosives by recombinant rat neuronal nitric oxide synthase (nNOS, EC 1.14.13.39), aiming to characterize the role of nNOS in the oxidative stress-type cytotoxicity of the above compounds. The steady-state second-order rate constants (kcat/Km) of reduction of the quinones and nitroaromatics varied from 102 M-1s-1 to 106 M-1s-1, and increased with an increase in their single-electron reduction potentials (E17). The presence of Ca2+/calmodulin enhanced the reactivity of nNOS. These reactions were consistent with an 'outer sphere' electron-transfer mechanism, considering the FMNH./FMNH2 couple of nNOS as the most reactive reduced enzyme form. An analysis of the reactions of nNOS within the 'outer sphere' electron-transfer mechanism gave the approximate values of the distance of electron transfer, 0.39-0.47 nm, which are consistent with the crystal structure of the reductase domain of nNOS. On the other hand, at low oxygen concentrations ([O2] = 40-50 μM), nNOS performs a net two-electron reduction of quinones and nitroaromatics. This implies that NOS may in part be responsible for the bioreductive alkylation by two-electron reduced forms of antitumour aziridinyl-substituted quinones under a modest hypoxia.
EN
In order to characterize the possible mechanism(s) of cytotoxicity of a neuroleptic agent 6,7-dinitrodihydroquinoxaline-2,3-dione (DNQX) we examined the redox properties of DNQX, and its mononitro- (NQX) and denitro- (QX) derivatives. The irreversible electrochemical reduction of the nitro groups of DNQX was characterized by the reduction peak potentials (Ep,7) of -0.43 V and -0.72 V vs. Ag/AgCl at pH 7.0, whereas NQX was reduced at Ep,7 = -0.67 V. The reactivities of DNQX and NQX towards the single-electron transferring enzymes NADPH:cytochrome P-450 reductase and NADPH:adrenodoxin reductase/adrenodoxin complex were similar to those of model nitrobenzenes with the single-electron reduction potential (E17) values of -0.29 V - -0.42 V. DNQX and NQX also acted as substrates for two-electron transferring mammalian NAD(P)H:quinone oxidoreductase (DT-diaphorase). The cytotoxicity of DNQX in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) was prevented by antioxidants and an inhibitor of NQO1, dicoumarol, and was enhanced by the prooxidant alkylating agent 1,3-bis(2-chloromethyl)-1-nitrosourea. A comparison with model nitrobenzene compounds shows that the cytotoxicity of DNQX and NQX reasonably agrees with the ease of their electrochemical reduction, and/or their reactivities towards the used enzymatic single-electron reducing systems. Thus, our data imply that the cytotoxicity of DNQX in FLK cells is exerted mainly through oxidative stress.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.