Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Counterpropagating Matter Waves in Optical Lattices

100%
EN
An investigation of Bose-Einstein condensate in two-dimensional optical lattice potentials, formed by laser beams, is carried out. We are interested in the dynamics of Bose-Einstein condensate in a square optical lattice, where the periodic potential can lead to the stabilization of an otherwise unstable Bose-Einstein condensate. The behavior of Bose-Einstein condensate in optical lattices is described by the nonlinear Gross-Pitaevskii equation, which we treat numerically. By applying the Petviashvili iteration method, we demonstrate the existence of solitonic solutions in the case of counterpropagating matter waves, and analyze their stability.
EN
A review of work on the dynamical behavior of counterpropagating incoherent laser beams in photorefractive crystals is presented. Numerical study of counterpropagating beams of different type is carried out, in both space and time, using an appropriate theoretical model. The development of patterns in broad hyper-Gaussian counterpropagating beams in saturable Kerr-like media is investigated, by varying the width of beams. Rotational properties of counterpropagating mutually incoherent self-trapped vortex beams in optically induced fixed photonic lattices are also investigated numerically. One of the fundamental quantum mechanical phenomena is observed for the counterpropagating beams in photonic lattices, the tunneling of light from the first to the higher-order bands of the lattice band gap spectrum. The transfer of angular momentum from vortex beams to optically induced photonic lattices is also demonstrated. For the interacting beams it is found that the sum of angular momenta of counterpropagating components is not a conserved quantity, but the difference is. In the fixed lattices there is always a considerable loss of angular momentum.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.