Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Solids containing an extended network of free radicals have been prepared and studied by magnetic resonance techniques in the 4–290 K temperature range. One solid contained additionally a small amount of magnetic γ-Fe2O3 in the form of nanoparticle agglomerates. The solid without agglomerates displayed only a narrow, single resonance line centered at g eff = 2.0043. The magnetic resonance measurements of the solid with γ-Fe2O3 agglomerates gave a spectrum composed of two lines attributed to two different magnetic centers: a narrow line due to free radicals and a broad line arising from magnetic iron oxide agglomerates. In the high temperature range the integrated intensities of both lines decreased with decreasing temperature. The resonance field of the broad line shifted to lower magnetic fields upon lowering the temperature with the gradient ΔH r/ΔT = 2.3 G/K, while the narrow line shifted towards higher magnetic fields. The linewidth of the broader line increased with decreasing temperature while for the narrow lines in both samples this change was small. The magnetic iron oxide clusters produce a magnetic field which acts on the free radicals network and its strength depends essentially on the concentration of clusters. The reorientation process in the free radicals network is more intense in the sample without magnetic clusters.
2
84%
EN
Magnetic resonance study of six samples consisting of carbon encapsulated nickel nanoparticles or carbon nanotubes ended with such nickel nanoparticles was carried out at room temperature. Samples of Ni/C were prepared by carburization of nanocrystalline nickel by ethylene (C2H4) and methane (CH4). Hydrocarbons decomposition on nickel nanoparticles was done at temperatures 500, 600 and 700°C. Magnetic resonance spectra of samples designated as CH4/500, CH4/600, CH4/700, C2H4/500, C2H4/600 and C2H4/700 were obtained by Bruker E 500 spectrometer. The integrated intensities of the resonance spectra were correlated with the carburization conditions (temperature, type of hydrocarbon) during samples preparation. A core-shell model of the investigated samples allowed rough estimation of appropriate shell sizes. [...]
EN
Nanoparticles of nitrogen-modified TiO2 (N-doped TiO2) calcined at 300°C and 350°C, have been prepared with and without water rinsing. Samples were characterized by x-ray diffractrometry (XRD) and optical spectroscopy. The electron paramagnetic resonance (EPR) spectra from centers involving oxygen vacancies were recorded for all samples. These could be attributed to paramagnetic surface centers of the hole type, for example to paramagnetic oxygen radicals O−, O2−etc. The concentration of these centers increased after water rising and it further increased for samples annealed at higher temperature. Additionally, for samples calcined at 300°C, and calcined at 350°C and rinsed, the EPR spectra evidenced the presence of magnetic clusters of Ti3+ ions. The photocatalytic activity of samples was studied towards phenol decomposition under unltraviolet-visible (UV-Vis) irradiation. It was found that, in comparison to the starting materials, the rinsed materials showed increased photocatalytic activity towards phenol oxidation. The light absorption (UV-Vis/DRS) as well as surface Fourier transform infrared/diffuse reflectance spectroscopy (FTIR/DR) studies confirmed a significantly enhanced light absorption and the presence of nitrogen groups on the photocatalysts surfaces, respectively. A significant increase of concentration of paramagnetic centers connected with oxygen vacancies after water rising has had an essential influence on increasing their photocatalytic activity. [...]
EN
Three nCo,N-TiO2 nanocomposites (where cobalt concentration index n = 1, 5 and 10 wt %) were prepared and investigated by magnetic resonance spectroscopy at room temperature. Ferromagnetic resonance (FMR) lines of magnetic cobalt agglomerated nanoparticle were dominant in all registered spectra. The relaxation processes and magnetic anisotropy of the investigated spin system essentially depended on the concentration of cobalt ions. It is suggested that the samples contained two magnetic types of sublattices forming a strongly correlated spin system. It is suggested that the existence of strongly correlated magnetic system has an essential influence of the photocatalytic properties of the studied nanocomposites.
5
84%
EN
Iron and nitrogen co-modified titanium dioxide nanocomposites, nFe,N-TiO2 (where n = 1, 5 and 10 wt% of Fe), were investigated by detailed dc susceptibility and magnetization measurements. Different kinds of magnetic interactions were evidenced depending essentially on iron loading of TiO2. The coexistence of superparamagnetic, paramagnetic and ferromagnetic phases was identified at high temperatures. Strong antiferromagnetic interactions were observed below 50 K, where some part of the nanocomposite entered into a long range antiferromagnetic ordering. Antiferromagnetic interactions were attributed to the magnetic agglomerates of iron-based and trivalent iron ions in FeTiO3 phase,whereas ferromagnetic interactions stemmed from the F-center mediated bound magnetic polarons.
6
Content available remote

Magnetic properties of ZnFe2O4 nanoparticles

68%
EN
Fine particles of ZnFe2O4 were synthesized by a wet chemical method in the (80 wt.% Fe2O3 + 20 wt.% ZnO) system. The morphological and structural properties of the mixed system were investigated by scanning electron microscopy, X-ray diffraction, inductively coupled plasma atomic emission, and X-ray photoelectron spectroscopy. The major phase was determined to be the ZnFe2O4 spinel with particle size of 11 nm. The magnetic properties of the material were investigated by ferromagnetic resonance (FMR) in the temperature range from liquid helium to room temperature. A very intense, asymmetric FMR signal from ZnFe2O4 nanoparticles was recorded, which has been analyzed in terms of two Callen-lineshape lines. Temperature dependence of the FMR parameters was obtained from fitting the experimental lines with two component lines. Analysis of the FMR spectra in terms of two separate components indicates the presence of strongly anisotropic magnetic interactions.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.