Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The main aim of the presented work is the integration of a long-period fiber grating and a liquid crystal into a hybrid structure, in order to develop an innovative fiber optic device controlled by an external electric field. The studied long-period fiber grating was fabricated using UV irradiation in a boron co-doped fiber (PS1250/1500, manufactured by Fibercore). As a liquid crystal we used a typical 5CB nematic liquid crystal. The sensing mechanism of the proposed loss filter relies on long-period fiber grating attenuation bands sensitivity to optical properties of the liquid crystal layer. The results obtained show that the long-period fiber grating with a nanosized liquid crystal layer exhibits one order of magnitude higher electrical sensitivity and a lower level of the voltage control than the long-period fiber grating with a micro-sized liquid crystal layer.
EN
Gas sensing materials have been prepared in a form of TiO_{2}-SnO_{2} thin films by rf reactive sputtering from Ti:SnO_{2} and Sn:TiO_{2} targets. Material studies have been performed by scanning electron microscopy, atomic force microscopy, X-ray diffraction at grazing incidence, Mössbauer spectroscopy, X-ray photoelectron spectroscopy and optical spectrophotometry. Dynamic gas sensing responses have been recorded as reproducible changes in the electrical resistance upon introduction of hydrogen at a partial pressure of 100-6000 ppm over a wide temperature range 473-873 K. Contamination experiments have been carried out with the motor oil (40 vol.% solution in CCl_{4}) in order to study the effect of UV light illumination on the gas sensor response. Optical spectroscopy has been applied to monitor the photodecomposition of the test compound, bromothymol blue. The Electronic Nose, ALPHA MOS FOX 4000 has been used in order to differentiate between different groups of motor oil vapors.
EN
The work presented in this paper is focused on investigation of the spectral properties of the long-period fiber gratings combined with the liquid crystals, named liquid crystal long-period fiber gratings. The experiments carried out showed that the proposed designs of the liquid crystal long-period fiber gratings can offer very interesting spectral properties and can introduce a new level of sensitivity. In particular, a high-efficiency thermal tuning of the long-period fiber gratings coated with low-birefringence liquid crystal layers could be achieved and gave rise to a fast and wide switching ability of the attenuation bands within their transmission spectrum.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.