Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 23

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
Short history of the path to the of was described. Special attention was been paid to the early work of Rosalin Franclin, Maurice Wilkins and Erwin Charagaff. Also some general consequences of the for biological sciences were discused.
2
Content available remote

Methionyl-tRNA synthetase.

64%
|
2001
|
vol. 48
|
issue 2
337-350
EN
Methionyl-tRNA synthetase (MetRS) belongs to the family of 20 enzymes essential for protein biosynthesis. It links covalently methionine with its cognate tRNA. Crystal structures solved for bacterial MetRSs have given a number of interesting insights into enzyme architecture and methionylation catalysis. A comparison of sequences of MetRSs belonging to all kingdoms of life, as well as numerous biochemical and genetic studies have revealed the presence of various additional domains appended to the catalytic core of synthetase. They are responsible for interactions with tRNA and proteins. Tertiary structure of C-terminal tRNA-binding appendices can be deduced from those determined for their homologues: tRNA binding protein 111 and endothelial monocyte-activating polypeptide II. Contacts between MetRS and other proteins could be mediated not only by noncatalytic peptides but also by structural elements present in the catalytic core, e.g. Arg-Gly-Asp (RGD) motifs. Additional activities involve MetRS in the maintenance of translational fidelity and in coordination of ribosome biogenesis with protein synthesis.
3
Content available remote

Understanding evolution

64%
|
2001
|
vol. 48
|
issue 2
291-294
4
Content available remote

The genetic code - 40 years on

64%
|
2007
|
vol. 54
|
issue 1
51-54
EN
The genetic code discovered 40 years ago, consists of 64 triplets (codons) of nucleotides. The genetic code is almost universal. The same codons are assigned to the same amino acids and to the same START and STOP signals in the vast majority of genes in animals, plants, and microorganisms. Each codon encodes for one of the 20 amino acids used in the synthesis of proteins. That produces some redundancy in the code and most of the amino acids being encoded by more than one codon. The two cases have been found where selenocysteine or pyrrolysine, that are not one of the standard 20 is inserted by a tRNA into the growing polypeptide.
|
2016
|
vol. 63
|
issue 4
709-716
EN
The general idea of regenerative medicine is to fix or replace tissues or organs with live and patient-specific implants. Pluripotent stem cells are capable of indefinite self-renewal and differentiation into all cell types of the body. An easily accessible source of induced pluripotent stem cells (iPSCs) may allow obtaining and culturing tissues in vitro. Many approaches in the methods leading to obtain iPSCs have been tested in order to limit immunogenicity and tumorigenesis, and to increase efficiency. One of the approaches causing pluripotency is usage of small molecule compounds. It would be of great importance to assess their specific properties and reveal their new capacity to induce pluripotent stem cells and to improve reprogramming efficiency. Identification of the epigenetic changes during cellular reprogramming will extend our understanding of stem cell biology and many therapeutic applications. In this paper we discuss mainly the nucleotide derivatives, already proven or for now only putative inducers of the cells' pluripotency, that modulate the epigenetic status of the cell.
7
Publication available in full text mode
Content available

Regulatory RNAs in Planarians

52%
|
2016
|
vol. 63
|
issue 4
681-686
EN
The full scope of regulatory RNA evolution and function in epigenetic processes is still not well understood. The development of planarian flatworms to be used as a simple model organism for research has shown a great potential to address gaps in the knowledge in this field of study. The genomes of planarians encode a wide array of regulatory RNAs that function in gene regulation. Here, we review planarians as a suitable model organism for the identification and function of regulatory RNAs.
8
Content available remote

Structure and functions of 5S rRNA.

52%
EN
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in all organisms. It is composed of two-subunit, ribonucleoprotein particles that translate the genetic material into an encoded polypeptides. The small subunit is the site of codon-anticodon interaction between the messenger RNA (mRNA) and transfer RNA (tRNA) substrates, and the large subunit catalyses peptide bond formation. The peptidyltransferase activity is fulfilled by 23S rRNA, which means that ribosome is a ribozyme. 5S rRNA is a conserved component of the large ribosomal subunit that is thought to enhance protein synthesis by stabilizing ribosome structure. This paper shortly summarises new results obtained on the structure and function of 5S rRNA.
11
Content available remote

The new aspects of aminoacyl-tRNA synthetases.

52%
EN
Aminoacyl-tRNA synthetases (AARS) are essential proteins found in all living organisms. They form a diverse group of enzymes that ensure the fidelity of transfer of genetic information from the DNA into the protein. AARS catalyse the attachment of amino acids to transfer RNAs and thereby establish the rules of the genetic code by virtue of matching the nucleotide triplet of the anticodon with its cognate amino acid. Here we summarise the effects of recent studies on this interesting family of multifunctional enzymes.
12
Publication available in full text mode
Content available

RNA dactyloscopy

52%
|
2016
|
vol. 63
|
issue 4
785-787
EN
Despite the wealth of data on RNA secondary structure, conformational dynamics and tertiary structure in vitro and in vivo, predicting RNA biological activity in cellular environments remains difficult. Here, we present a comparison between in silico RNA fingerprinting and published experimental data that sheds light on efficient design of the hammerhead ribozyme molecules with a high intracellular efficiency. Our method, which we call RNA dactyloscopy, is a reliable tool for assessing the catalytic properties, modeling and design of RNA.
EN
Methylation at position 5 of cytosine (Cyt) at the CpG sequences leading to formation of 5-methyl-cytosine (m5Cyt) is an important element of epigenetic regulation of gene expression. Modification of the normal methylation pattern, unique to each organism, leads to the development of pathological processes and diseases, including cancer. Therefore, quantification of the DNA methylation and analysis of changes in the methylation pattern is very important from a practical point of view and can be used for diagnostic purposes, as well as monitoring of the treatment progress. In this paper we present a new method for quantification of 5-methyl-2'deoxycytidine (m5C) in the DNA. The technique is based on conversion of m5C into fluorescent 3,N4-etheno-5-methyl-2'deoxycytidine (εm5C) and its identification by reversed-phase high-performance liquid chromatography (RP-HPLC). The assay was used to evaluate m5C concentration in DNA of calf thymus and peripheral blood of cows bred under different conditions. This approach can be applied for measuring of 5-methylcytosine in cellular DNA from different cells and tissues.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.