Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The purpose of this study was to compare the effects of an 8-week training period of strength training alone (GR), or combined strength and endurance training (GCOM), followed by 12-weeks of de-training (DT) on body composition, power strength and VO2max adaptations in a schooled group of adolescent girls. Methods: Sixty-seven healthy girls recruited from a Portuguese public high school (age: 13.5±1.03 years, from 7th and 9th grade) were divided into three experimental groups to train twice a week for 8 wks: GR (n=21), GCOM (n=25) and a control group (GC: n=21; no training program). Anthropometric parameters variables as well as performance variables (strength and aerobic fitness) were assessed. Results: No significant training-induced differences were observed in 1kg and 3kg medicine ball throw gains (2.7 to 10.8%) between GR and GCOM groups, whereas no significant changes were observed after a DT period in any of the experimental groups. Significant training-induced gains in CMVJ (8 to 12%) and CMSLJ (0.8 to 5.4%) were observed in the experimental groups. Time of 20m significantly decreased (GR: -11.5% and GCOM: -10%) after both treatment periods, whereas only the GR group kept the running speed after a DT period of 12 weeks. After training VO2max increased only slightly for GCOM (4.0%). No significant changes were observed after the DT period in all groups, except to GCOM in CMVJ and CMSLJ. Conclusion: Performing simultaneous strength and endurance training in the same workout does not appear to negatively influence power strength and aerobic fitness development in adolescent girls. Indeed, concurrent strength and endurance training seems to be an effective, well-rounded exercise program that can be prescribed as a means to improve initial or general strength in healthy school girls. De-training period was not sufficient to reduce the overall training effects.
EN
Children aged 10-11 years pass through a dynamic developmental period marked by rapid changes in body size, shape, and composition, all of which are sexually dimorphic. The purpose of this study was to analyze the effects of gender on a school-based intervention in the prepubertal growth spurt. One hundred twenty-five healthy children (58 boys, 67 girls), fifth and sixth grade students from an urban public elementary school in Portugal (10.8 ± 0.4 years), were randomly assigned into two experimental groups: a strength training group (19 boys, 22 girls), and an endurance training group (21 boys, 24 girls); and a control group (18 boys, 21 girls; no training program). Training program for the two experimental groups was conducted twice a week for 8 weeks. Compared with the values at the beginning of the protocol, both strength and endurance training programs produced significant improvements (p< 0.05) in vertical and horizontal jumps, a 1 kg and 3 kg medicine ball throw, a 20 m sprint and VO2max, for both boys and girls. No significant changes were observed related to gender in training-induced strength (p> 0.05, ƞ_p^2= 0.16, Power= 0.29) and aerobic (p> 0.05, ƞ_p^2= 0.05, Power= 0.28) capacity. The results of the present study should be taken into consideration in order to optimize strength training school-based programs.
EN
This study aimed to investigate the acute effects of two strength-training protocols on the neuromuscular and cardiorespiratory responses during endurance exercise. Thirteen young males (23.2 ± 1.6 years old) participated in this study. The hypertrophic strength-training protocol was composed of 6 sets of 8 squats at 75% of maximal dynamic strength. The plyometric strength-training protocol was composed of 6 sets of 8 jumps performed with the body weight as the workload. Endurance exercise was performed on a cycle ergometer at a power corresponding to the second ventilatory threshold until exhaustion. Before and after each protocol, a maximal voluntary contraction was performed, and the rate of force development and electromyographic parameters were assessed. After the hypertrophic strengthtraining and plyometric strength-training protocol, significant decreases were observed in the maximal voluntary contraction and rate of force development, whereas no changes were observed in the electromyographic parameters. Oxygen uptake and a heart rate during endurance exercise were not significantly different among the protocols. However, the time-to-exhaustion was significantly higher during endurance exercise alone than when performed after hypertrophic strength-training or plyometric strength-training (p <0.05). These results suggest that endurance performance may be impaired when preceded by strength-training, with no oxygen uptake or heart rate changes during the exercise.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.